महाराष्ट्र आर्प्रयोत्रिकी (स्थापत्य) सेवा मुख्य परिद्या- २७१८

परीक्षा रि: १५ व १६ डिसेंबर, 2092

प्रश्नपुस्तिका क्रमांक BOOKLET No.

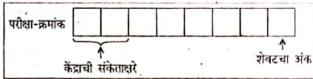
2012

Code: U01

22309

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी पेपर – I

वेळ : 2 (दोन) तास



एकूण प्रश्न : 100

एकूण गुण: 200

सूचना

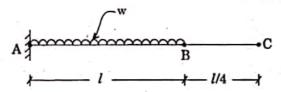
- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत यांची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही
 - प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

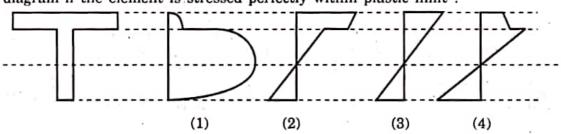

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

1.	In F	Residential building, kitchen shou	ld have	aspect.					
	(1)	Eastern (2) Southern	(3)	South-Eastern (4) Northern					
2.	Wor	kability of concrete can be measu	red by						
	(1)	Slump test	(2)	Compaction factor test					
	(3)	Kelly ball test	(4)	All the above					
3.		a rectangular room, better proporeadth.	rtion is	to adopt length as times					
10 20	(1)	1 to 1.2 (2) 1.2 to 1.7	(3)	1.2 to 1.5 (4) 1.5 to 1.7					
4.		laboratory slump test result of t ree of workability of such concrete		concrete is between 25 - 50 mm. The					
	(1)	very low (2) low	. (3)	medium (4) high					
5	Blac	ck cotton soil is a product of deco	mpositio	n of					
	(1)	Granite	(2)	Marble					
	(3)	Basalt	(4)	Sandstone					
6.	The	strength achieved by a brick dep	ends on						
	(1)	composition of brick earth	(2)	nature of moulding adopted					
	(3)	burning and cooling process	(4)	All the above					
7.	Capacity of concrete to bear imposed stresses safely is called as								
	(1)	Compressive strength	(2)	Shear strength					
	(3)	Durability	(4)	Resistance					
8.	Stat	te whether the following statemer	nts are t	rue or false :					
·.	a.	Consistency test is used to de preparing cement paste.	termine	the percentage of water required for					
	b	Vicat Apparatus is used for dete	rmining	the consistency of cement.					
	(1)	a true, b true	(2)	a false, b false					
	(3)	a true, b false	(4)	a false, b true					

9.	Durability of construction material is	11,84	t. It will be combined by the
	(1) Resistance to crushing	(2)	Resistance to weathering
	(3) Shear strength	(4)	Compressive strength
10.	Seasoning of timber means)** (§	
	(1) removing the moisture content	(2)	reducing weight of timber
· 10	(3) Both (1) and (2)	(4)	None of the above
11.	is the quantity of fin M 150 - 1:2:4 grade of concrete.	e aggr	regate required per 50 kg of cement of
	(1) 0-340 kg	(2)	0.053 kg
1	(3) 0.035 kg	(4)	0.070 kg
12.	Artificial method of seasoning timber is	s	4P 4 4 4 W 10
	(1) boiling	(2)	chemical seasoning
. 9	(3) water seasoning	(4)	All of the above
13.	Laterite is used in	7.7	TO HARD ME SHEET
	(1) carving and ornamental works	(2)	fire resistance works
* 17	(3) electrical switchboards	(4)	heavy engineering works
14.	In medium carbon steel, carbon conten	t varie	es from
	(1) 0.25% to 0.60%	(2)	0·10% to 0·25%
	(3) 0.60% to 0.75%	(4)	0.75% to 1.00%
15.	Light weight concrete is also known as	3	
	(1) low concrete	(2)	lean concrete
mi i	(3) transparent concrete	(4)	cellular concrete
16.	The process of tempering is applied to	steel i	in hardening process for improving
	(1) ductility	(2)	strength
	(3) roughness	(4)	All of the above

A cantilever beam 'AC' of uniform cross-section carries a uniformly distributed load over the portion 'AB' of length 'l' as shown. Slope at free end 'C' will be

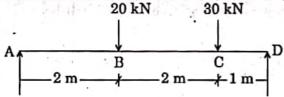


- (1)

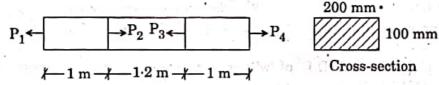
- Shrinkage strain developed in post-tensioning beam when prestressing force transfer at the age of 't' days is
 - (1)

- $\frac{0.003}{\log_{10}(t+2)} \quad (2) \quad \frac{0.002}{\log_{10}(t+2)} \qquad (3) \quad \frac{0.0035}{\log_{10}(t+2)} \qquad (4) \quad \frac{0.001}{\log_{10}(t+1)}$
- __ at corresponding 19. ___ at any section in a given beam is equal to ___ section in conjugate beam.
 - (1)slope, shear force

- (2)deflection, shear force
- slope, bending moment
- slope, deflection (4)
- 20. A beam of span 'L' carries a U.D.L. of 'w' per m run and prestressing force in the cable is 'P'. What will be the eccentricity of parabolic cable at centre (i.e. dip) so as to nullify the bending effect?
 - (1)
- (2) $\frac{3 \text{ wL}^2}{5 \text{ P}}$ (3) $\frac{\text{wL}^2}{8 \text{ P}}$
- $(4) \quad \frac{\text{wL}^3}{8 \text{ P}}$
- A cast iron beam is a T-section as shown. It is supported and carrying a uniformly distributed load. Which of the following is the correct bending stress distribution diagram if the element is stressed perfectly within plastic limit?

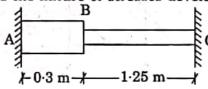

- 22. In pretensioned system, when prestressed force is transferred by releasing tendon, the end of wire swells and develops wedge effect. At the end, prestressing force becomes zero. This is known as
 - Hoyer effect (1)

Shear effect (2)


Wobbling effect

(4)Bursting effect

23. Which part of the beam is subjected to pure bending in the following figure?



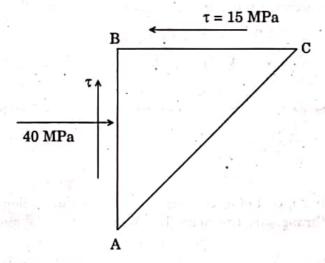
- AB(1)
- (2)BC
- (3)CD
- No part of beam is subjected to pure bending
- Progressive increase in the inelastic deformation of concrete under sustained stress 24. component is known as
 - (1). Shrinkage of concrete
- (2) Creep of concrete
- (3) Deformation of concrete
- Yielding of concrete
- Calculate the maximum stress acting on the cross-section of following element:

Take $P_1 = 45$ kN, $P_2 = 445$ kN and $P_4 = 130$ kN.

- (1) 20 N/mm^2 (2) 22.5 N/mm^2
- (3) 28·75 N/mm²
- (4) 6.5 N/mm²
- 26. What are the stresses developed at the top and bottom of a rectangular beam subjected to prestressing force of 50 kN at a distance of 50 mm from bottom. The c/s of beam is 100×100 mm.
 - (1) (5,5)
- (2) (20, 10)
- (3) (5, 10)
- (4) (10, 5)
- At room temperature the rods are shown in figure. When temperature is raised, what is the nature of stresses developed in each rod, if $E_{Al} < E_{s}$ and $\alpha_{Al} > \alpha_{s}$?

Supports are unvielding

Aluminium dia = 20 mm Steel


dia = 10 mm

- Compressive in aluminium and steel
- (2)Tensile in aluminium and steel
- (3)Compressive in aluminium and tensile in steel
- Tensile in aluminium and compressive in steel

SPACE FOR ROUGH WORK

- 28. The prestressed concrete is considered as a combination of steel and concrete, with steel taking tensile force passing through the tendon and concrete taking compressive force passing through the C.G. of stress distribution so that the two materials form a resisting couple to resist external moment. This concept is called as
 - (1) strength concept

- (2) stress concept
- (3) load balancing concept
- (4) moment concept
- 29. If AC is principal plane, then magnitude of principal tensile stresses will be

(1) 15 MPa

(2) 5 MPa

(3) 45 MPa

- (4) Zero
- 30. In a post-tensioning system, high tension steel wires 5 mm to 8 mm diameter about 12 in number are arranged to form a group into a cable with a spiral spring inside. This system is known as
 - (1) The Freyssinet System
 - (2) The Magnel Blaton System
 - (3) P.S.C. Monowire System
 - (4) C.C.L. Standard System

31.	A simply supported beam subjected to uniformly varying load of intensity W at l	lef
g j	end (A) reduces to zero at right end (B). Then slope at end B is	

(1)	5 WL ³
(1)	360 EI

(2)
$$\frac{9 \text{ WL}^3}{360 \text{ EI}}$$

(3)
$$\frac{3 \text{ WL}^3}{360 \text{ EI}}$$

$$(4) \quad \frac{7 \text{ WL}^3}{360 \text{ EI}}$$

32.	If a moment is applied to the hinged end of a prismatic	propped	cantilever,	then the
	moment at the fixed end will be			

(1)
$$wxL^2/(L-x)$$

(2)
$$wx (L - x)/L$$

(3)
$$wx^2(L-x)/L^2$$

(4)
$$WL(L-x)/L$$

(1)
$$\frac{5}{8}$$
 wL

(2)
$$\frac{3}{8}$$
 wL

(3)
$$\frac{8}{5}$$
 wL

(4)
$$\frac{3}{2}$$
 wL

(1)
$$wl^2/4$$

(2)
$$wl^2/8$$

(3)
$$wl^2/12$$

(4)
$$wl^2/16$$

(1)
$$wL^4/8 EI$$

(2)
$$wL^3/3 EI$$

(3)
$$wL^2/8 EI$$

(4)
$$wL^4/3 EI$$

- 38. A two span continuous beam having equal spans each of length l is subjected to u.d.l. w per unit length. The beam has constant EI. The reaction at the middle support is
 - (1) wl
- 5 wl/2(2)
- 5 wl/4 (3)
- (4) 5 wl/8
- A cable is supported at both ends at the same level and is subjected to U.D.L. over the entire span. If y_c is the central dip and l is the span of a cable, then horizontal thrust developed at the support is
 - (1) $wl^3/8y_c$
- (2) $wl^2/3y_n$
- (3) $wl^2/8y_c$
- (4) $wl^2/2y_a$
- U₁ and U₂ are the strain energies stored in a prismatic bar due to axial tensile 40. forces P1 and P2 respectively. The strain energy U stored in the same bar due to combined action of P1 and P2 will be
 - (1) $U = U_1 + U_2$

(2) $U = U_1 \times U_2$

(3) $U < U_1 + U_2$

- (4) $U > U_1 + U_2$
- "The bending moment at any point of an arch axis is proportional to the vertical 41. intercept between the theoretical arch" is the statement of
 - Mohr's theorem (1)

- (2) Eddy's theorem
- Castigliano's theorem
- Theorem of least work (4)
- A three-hinged symmetrical parabolic arch is subjected to a u.d.l. of w per unit run over the whole span. Then the bending moment is zero at
 - (1)supports

(2)quarter spans

(3)crown

- (4)All the three above
- When one of the supports of a beam is at a lower level as compared to the other, it 43. will cause a moment at both ends. The magnitude of this moment introduced in slope deflection equation is

- (1) $-\frac{3 \operatorname{El} \delta}{l^2}$ (2) $-\frac{4 \operatorname{El} \delta}{l^2}$ (3) $-\frac{6 \operatorname{El} \delta}{l^2}$ (4) $-\frac{2 \operatorname{El} \delta}{l^2}$
- A two-hinged parabolic arch is subjected to u.d.l. w over entire span. Then the horizontal thrust is
 - $wl^2/3h$ (1)

(2) $wl^2/4h$

 $wl^2/6h$

(4) $wl^2/8h$

45.	The dist	tance b	etween	rivet	centers	measured	along	transverse	to	the	direction	of
KH II	force is				1 3680	The state of	1			67	1.19.4	

(1)Gauge

Pitch (2)

End distance (3)

Maximum pitch (4)

46. Determine the rivet value of 20 mm diameter rivets connecting 12 mm thick plate if it is in single shear. Gross area of rivet is 363.05 mm², permissible stresses in shear and bearing are 80 MPa and 250 MPa respectively.

64.5 kN (1)

(2)645 kN

(3) 29·044 kN

(4)290.44 kN

The effective length of fillet weld of length 200 mm and size 12 mm is

- 188 mm (1)
- (2) 176 mm
- (3)388 mm
- (4) 200 mm

The type of weld used for joining two surfaces approximately at right angles to each other is known as

Butt weld (1)

- (2) U groove weld
- V groove weld
- (4) Fillet weld

The net effective cross-sectioned area of a single angle section connected by one leg to the gusset plate is

- (1) $\frac{3 A_1}{3 A_1 + A_2}$ (2) $\frac{5 A_1}{5 A_1 + A_2}$ (3) $\frac{3 A_1}{3 A_1 A_2}$ (4) $\frac{5 A_1}{5 A_1 A_2}$

50. The effective length of compression steel column of length 'L' which is effectively held in position at both ends but not restrained against rotation is

- 0.65 L (1)
- (2)0.8 L
- (3) L
- (4) 1.5 L

51. The axial force in each lacing in double lacing system is

 $\frac{V}{4n\sin\theta}$

(3)

SPACE FOR ROUGH WORK

- 52. The beam is subjected to U.D.L. of 41.25 kN/m. Effective span of beam is 8 m. Find section modulus for the section. Assume $\sigma_{bc} = 165$ MPa.
 - (1) $2 \times 10^6 \text{ mm}^3$

(2) $2 \times 10^3 \text{ mm}^3$

(3) $2.5 \times 10^6 \text{ mm}^3$

- (4) $2.5 \times 10^3 \text{ mm}^3$
- 53. What is the effective length of beam if compression flange is restrained fully against lateral bending, as per IS 800: 200?
 - (1) L
- ·(2) 0·8 L
- (3) 0·85 L
- (4) 0·7 L
- 54. As per IS 800: 1984, the thickness of slab base is
 - $(1) \quad \frac{3w}{\sigma_{bs}} \left(a^2 \frac{b^2}{4} \right)$

 $(2) \quad \frac{3w}{\sigma_{bs}} \left(\frac{a^2 - b^2}{4} \right)$

(3) $\sqrt{\frac{3w}{\sigma_{bs}}\left(a^2-\frac{b^2}{4}\right)}$

- (4) $\sqrt{\frac{3w}{\sigma_{bs}}\left(\frac{a^2-b^2}{4}\right)}$
- 55. Intermediate vertical stiffners are required in plate girder when $\mathrm{d/t_w}$ ratio of the web exceeds
 - (1) 85
- (2) 80
- (3) 90
- (4) 75

- 56. In plate girder, flanges are designed to resist
 - (1) Shear force

(2) Bending moment

(3) Axial force

- (4) Torsional moment
- 57. The flange splice in plate girder should be selected at
 - (1) maximum shear location
- (2) minimum shear location
- (3) maximum moment location
- (4) minimum moment location
- 58. Structural members of the truss which are supported on the principal rafter and which run transverse to the truss are called
 - (1) Rafters

(2) Purlins

(3) Sag tie

(4) Struts

- The moment of resistance offered by balanced section in W.S.M. is given by (As per IS 456 - 2000)
 - (1) $\frac{1}{2} \cdot \sigma_{cbc} \cdot b \cdot x^2$

- $(2) \quad \frac{1}{2} \cdot \sigma_{\rm cbc} \cdot b \cdot d^2$
- (3) $\frac{1}{2} \cdot \sigma_{cbc} \cdot b \cdot d \cdot (1 x/3)$
- (4) $\frac{1}{2} \cdot \sigma_{cbc} \cdot b \cdot x \cdot (d x/3)$
- The compressive strength requirements of 53 grade O.P.C. cement as per 60. IS 12269 - 1989 @ 3, 7 and 28 days in N/mm² are
 - 33, 43, 53
- (2) 27, 37, 53
- 33, 47, 53
- (4) 27, 45, 53
- 61. In a rectangular beam of section b x d, subjected to ultimate torsional moment Tu, equivalent ultimate shear can be given as
 - (1) $Vu + 1.6 \cdot \frac{Tu}{L}$

(2) $Vu + 1.6 \cdot \frac{Tu}{bd}$

- (3) $Vu + 2 \cdot \frac{Tu}{L}$
- $(4) \quad Vu + \frac{Tu}{2h}$
- 62. Area of footing of an axially loaded column subjected to working load of 1000 kN and safe bearing capacity of soil 250 kN/m², is
 - 4.0 m^2 (1)
- (2) 4.4 m^2
- (3) 6.0 m^2 (4) 5.5 m^2
- 63. Minimum depth of foundation is calculated using Rankine's formula in which \(\phi \) is the angle of repose, q_0 is the safe bearing capacity and γ is the unit weight of soil. The value is
 - $(1) \quad \frac{q_0}{\gamma} \left(\frac{1 + \sin \phi}{1 \sin \phi} \right)^2$

- (2) $\frac{q_0}{v} \left(\frac{1 \cos \phi}{1 + \cos \phi} \right)^2$
- $(3) \quad \frac{q_0}{\gamma} \left(\frac{1 \sin \phi}{1 + \sin \phi} \right)^2 \qquad (4) \quad \frac{q_0}{\gamma} \left(\frac{1 + \cos \phi}{1 \cos \phi} \right)^2$

- If a retaining wall is to be constructed to retain water of height 'H' and 'w' is unit 64. weight of water, then water pressure acting on retaining wall will be
 - (1) $K_a w H^2/2$

(2) $K_p w H^2/2$

(3) $wH^2/2$

- As per IS 456: 2000, maximum bending moment at a support next to end support 65. of a three span continuous beam having each span 'L' subjected to U.D.L. in the form of dead load (Wd) and live load (WL) is given by
 - (1) $\frac{1}{10} W_d L^2 + \frac{1}{9} W_L L^2$
- (2) $\frac{1}{9} W_d L^2 + \frac{1}{10} W_L L^2$
- (3) $\frac{1}{10} W_d L^2 + \frac{1}{16} W_L L^2$
- (4) $\frac{1}{12} W_d L^2 + \frac{1}{16} W_L L^2$
- Area of torsional reinforcement provided in a two-way slab at corners where both 66. adjacent edges are continuous is

 - (1) $\frac{3}{4} A_{st} x^{+}$ (2) $\frac{3}{4} A_{st} y^{+}$ (3) $\frac{3}{8} A_{st} x^{+}$ (4) 0

- A singly reinforced rectangular section, $b \times d$ is effective c/s, f_{ck} and f_y are the characteristic strengths of concrete and steel respectively. The depth of neutral axis is calculated as

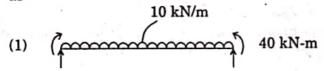
- (1) $\frac{0.85 \, f_{ck} \, bd}{f_{v}}$ (2) $\frac{0.87 \, f_{y} \, A_{st}}{0.36 \, f_{ck} \, bd}$ (3) $\frac{0.87 \, f_{y} \, A_{st}}{0.36 \, f_{ck} \, bd^{2}}$ (4) $\frac{0.87 \, f_{y} \, A_{st}}{0.36 \, f_{ck} \, b}$
- 68. The maximum strain in steel at failure in limit state method of design is considered
 - (1) $\frac{I_y}{1.15 E_z} + 0.002$

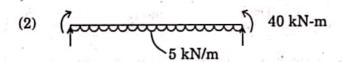
(2) $\frac{f_y}{1.15 E} + 0.0035$

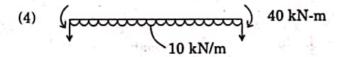
(3) $\frac{f_y}{1.5 E_z} + 0.0035$

 $(4) \quad \frac{1.51_{y}}{E} + 0.002$

- 69. In case of simply supported beam subjected to U.D.L. w throughout the span which develops maximum B.M. at the mid-span, the cracks formed during the failure of beam at mid-span are
 - (1) horizontal


(2) inclined at 45°


(3) inclined at 60°


- (4) vertical
- 70. In a slab cast monolithically with cantilever beam, the beam is above the slab so as to give plain soffit. Then the beam is designed as
 - (1) Rectangular section
- (2) Flanged section
- (3) Doubly reinforced section
- (4) None of the above
- 71. The load carrying capacity of a circular column with helical reinforcement is how much % more than that of column with lateral ties?
 - (1) 5%
- (9) 100
- (3) 15%
- (4) 20%
- 72. For the design of a staircase, if R is the riser, T is the tread and D is the thickness of waist slab, then the load of waist slab per m width of stair in plan will be
 - $(1) \quad 25 \text{ D} \times \left(\frac{\text{T}}{\sqrt{\text{T}^2 + \text{R}^2}}\right)$
- $(2) \quad 25 \text{ D} \times \left(\frac{\sqrt{T^2 + R^2}}{T}\right)$

- (3) $25 \text{ D} \times \left(\frac{\text{R}}{\sqrt{\text{T}^2 + \text{R}^2}}\right)$
- $(4) \quad 25 \text{ D} \times \left(\frac{\sqrt{\text{T}^2 + \text{R}^2}}{\text{R}} \right)$

73. There is a post-tensioned prestressed concrete beam with effective simply supported span of 8 m. This beam with rectangular cross section is prestressed with parabolic cable with 200 kN force, having eccentricity 200 mm above neutral axis at mid-span and 200 mm below it at support. The cable can be replaced by an equivalent effect

- 74. Principal tensile stresses at any section and at any fiber in a prestressed concrete beam are influenced by
 - (1) Horizontal prestress in concrete
- (2) Vertical prestress in concrete
- (3) Shear stress in concrete
- (4) All of the above
- 75. Effeciency of a rectangular prestressed concrete section with dimensions b = 0.5 d is
 - (1) bd
- (2) 0.5 bd
- (3) 0.5
- (4) 0.333
- 76. Which of the following statements is/are true with reference to a load balancing cable?
 - $Statement\ I:$

The flexural stresses are uniform at any section throughout the

span at service stage.

Statement II:

The flexural stresses are zero in the extreme fibers at any section

throughout the span at service stage.

Statement III:

The shear stresses are zero at any section throughout the span at

- service stage.
- (1) I only

(2) I and III only

(3) II and III only

(4) None of these

	pre-	tension beam is, if E _s =		
m.rite	(1)	60 MPa	(2)	200 MPa
	(3)	20 MPa	(4)	0.02 f _s MPa
78.		net resultant stresses at bottom fi ast must be passing from	iber of	a section are zero means the resultant
	(1)	extreme top fiber	(2)	neutral axis
	(3)	upper kern point	(4)	lower kern point
79.	only			n, jacking force is applied from one end riction between steel and surrounding
	(2)	Mid span	3.	
	(3)	Anchored end		for the confidence of the first
	(-,			
80.	(4) Min	Loss of stresses in steel due to fri	sfer (f _c), to avoid cracking of extreme fiber at
80.	Min a pr	Loss of stresses in steel due to fri	sfer (f _c	i), to avoid cracking of extreme fiber at to limit state of servicability, maximum
80.	Min a pr	Loss of stresses in steel due to fri	sfer (f _c rence t), to avoid cracking of extreme fiber at
80.	(4) Min a pr com (1) (3) Ver	Loss of stresses in steel due to frimum strength of concrete at transfestressed concrete beam with references in flexure should be $0.7~\sqrt{f_{ck}}$ $0.24~\sqrt{f_{ck}}$	sfer (f _c rence t (2) (4)	i), to avoid cracking of extreme fiber at to limit state of servicability, maximum 0.5 f _{ck}
	(4) Min a pr com (1) (3) Ver	Loss of stresses in steel due to frimum strength of concrete at transfestressed concrete beam with refer pression in flexure should be $0.7\ \sqrt{f_{ck}}$ $0.24\ \sqrt{f_{ck}}$ tical limits within which cable is the crete element is called as	(2) (4)	i), to avoid cracking of extreme fiber at to limit state of servicability, maximum 0.5 f _{ck} f _{ck} rovided in a post-tensioned prestressed
	(4) Min a pr com (1) (3) Ver conc	Loss of stresses in steel due to frimum strength of concrete at transfestressed concrete beam with referencession in flexure should be $0.7\ \sqrt{f_{ck}}$ $0.24\ \sqrt{f_{ck}}$ tical limits within which cable is the crete element is called as	(2) (4) (5) (6) (6)	i), to avoid cracking of extreme fiber at to limit state of servicability, maximum 0.5 f _{ck} f _{ck} rovided in a post-tensioned prestressed
	(4) Min a pr com (1) (3) Ver conc (1) (3) Min	Loss of stresses in steel due to frimum strength of concrete at transfestressed concrete beam with refer pression in flexure should be $0.7\ \sqrt{f_{ck}}$ $0.24\ \sqrt{f_{ck}}$ tical limits within which cable is the crete element is called as Anchorage zone Transmission length zone	(2) (4) (2) (4) (4)	i), to avoid cracking of extreme fiber at to limit state of servicability, maximum 0.5 f _{ck} f _{ck} rovided in a post-tensioned prestressed End block
81.	(4) Min a pr com (1) (3) Ver conc (1) (3) Min	Loss of stresses in steel due to frimum strength of concrete at transfestressed concrete beam with referencession in flexure should be $0.7\ \sqrt{f_{ck}}$ $0.24\ \sqrt{f_{ck}}$ tical limits within which cable is the crete element is called as Anchorage zone Transmission length zone	(2) (4) (2) (4) (4)	a), to avoid cracking of extreme fiber at to limit state of servicability, maximum 0.5 f _{ck} f _{ck} rovided in a post-tensioned prestressed End block Safe cable zone

The resist bursting tension, designed reinforcement is distributed in the zone of 83. from the loaded face of the end block, where 2y0 is depth of equivalent prism.

 $0y_0$ to $2y_0$

(2) $0y_0$ to y_0

(3) $0.2y_0$ to $2y_0$

(4) $0.2y_0$ to y_0

What is the correct order of increase in ultimate moment of resistance of 84.

- I. Pre-tension section
- II. Post-tension bonded section
- Post-tension unbonded section,

keeping all other parameters same.

(1) I, II and III (2)III, II and I

(3)II, III and I

All sections will have same UMR (4)

Deflection of a simply supported prestressed concrete beam of span T and flexural rigidity 'EI', due to a straight cable carrying prestressing force 'P' and eccentricity 'e' below the neutral axis is

 $(2) \quad \frac{\mathrm{Pe}\,l^2}{8\,\mathrm{EI}} \bigg]$

 $(3) \quad \frac{\text{Pe}\,l^2}{8\,\text{EI}} \, \Big]$

 $(4) \quad \left(\frac{\mathrm{Pe}\,l^2}{8\,\mathrm{EI}} + \frac{5\,\mathrm{Pe}\,l^2}{48\,\mathrm{EI}}\right) \uparrow$

86. A cantilever beam of span 'L' is supporting a udl of intensity 'w'. Most suitable cable profile will be

(1)

parabolic cable profile

(2)

parabolic cable profile

parabolic cable profile (3)parabolic cable profile (4)

87.	The shortcoming of bar chart is
Med	(1) lack of degree of details (2) activity inter-relationship
s it	(3) does not show progress of work (4) All the above
88.	Among the following, who is considered as the father of scientific management?
	(1) Max Weber (2) Henry Fayol
	(3) F.W. Taylor (4) Elton Mayo
89.	Program Evaluation and Review Technique is used when
	(1) repetitive type of work exists
Ť.	(2) time estimation is uncertain
	(3) time estimation is very easy
99:07	(4) cost optimization is of prime importance
90.	Which of the following is the main contribution of scientific management?
	(1) A rational approach to solve organisation problem
	(2) Development of principles of management
48	(3) Correlation between improved working conditions and high production
	(4) All of the above
91.	The sequence to be followed while developing the network diagram is
SET II	a. defining objectives
	b. sequencing the activities
	c. breaking down the structure
	d. developing the relation between events
	(1) a, c, b, d (2) a, b, c, d (3) a, d, c, b (4) c, a, b, d
92.	In what way does ABC analysis help the manager?
	(1) To purchase material at low price (2) To exercise selective control
	(3) To purchase material very fast (4) To select good quality material
93.	The optimistic time, pessimistic time and most likely time required for completion cactivity is 4, 11 and 6 days respectively. The expected time is
	(1) 5 days (2) 6 days
	(3) 5.5 days (4) 6.5 days

94. Which of the following is the formula for Economic Order Quantity if M is annual demand, Co is ordering cost, Cc is inventory carrying cost and S is unit price of an item?

(1) $EOQ = \sqrt{\frac{2MC_o}{SC_c}}$

(2) EOQ = $\sqrt{\frac{M C_o C_c}{2S}}$

(3) $EOQ = \sqrt{\frac{M C_c}{S C_o}}$

(4) EOQ = $\sqrt{\frac{2MS}{C_o C_c}}$

95. The optimistic time, pessimistic time and most likely time required for completion of an activity is 4, 8 and 6 days respectively. The variance of time estimate is

(1) 0.4356

(2) 0.450

(3) 0.400

(4) 0.500

96. Which of the following Acts specially covers safety legislation of construction industry in India?

(1) Contract Labour Act

(2) Workmen's Compensation Act

(3) Inter State Migrant Workers Act

- (4) There is no safety legislation oriented to construction industry
- 97. Most of the accidents in construction industry happen due to

(1) lack of education and training

(2) negligence and ignorance

(3) Both (1) and (2)

(4) None of the above

98. CPM network is

(1) Activity oriented

(2) Event oriented

(3) Labour oriented

(4) Money oriented

99. The fire safety requirements of the building are designed as per

(1) IS 1645 - 1960

(2) IS 1256 - 1967

(3) IS 1647 – 1960

(4) IS 1646 - 1960

100. Optimum duration of project corresponds to which of the following?

(1) Direct project cost

(2) Indirect project cost

(3) Crash project cost

(4) Total project cost

परीक्षेचे नांव: महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य)- परीक्षा -२०१२ परीक्षेचा दिनांक: १५ व १६ डिसेंबर,२०१२ विषय :(प्रश्नपत्रिका क्र.२) स्थापत्य अभियांत्रिकी - पेपर क्र.१

महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य) परीक्षा-२०१२ यास्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
1	1	2	3	4		
2	4	1	4	4		
3	3	4	1	2		
4	2	4	1	1		
5	3	1	1	4		
6	4	1	4	4		
7	1	4	3	1		
8	1	4	2	1		
9	2	1	1	1		
10	1	4	1	1		
11	4	3	4	1		
12	4	2	4	4		
13	1	3	2	3		
14	1	4	1	2		
15	4	1	4	3		
16	4	1	4	4		
17	1	4	1	3		
18	2	2	2	3		
19	1	1	1	1		
20	3	1	1	1		
21	3	1	2	2		
22	1	1	1	1		
23	4	2	3	1		
24	2	1	3	4		
25	1	1	1	2		

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
26	1	2	4	1		
27	1	1	2	1		
28	1	3	1	1		
29	2	3	1	1		
30	1	1	1	2		
31	4	3	3	2		
32	2	3	2	4		
33	2	4	2	3		
34	3	2	1	4		
35	2	4	4	3		
36	2	3	2	3		
37	1	4	2	4		
38	3	4	2	3		
39	3	2	4	2		
40	4	2	3	2		
41	,2	3	4	1		
42	4	2	3	4		
43	3	2	3	2		
44	4	1	4	2		
45	1	1	4	1		
46	3	4	1	2		
47	2	3	3	4		
48	4	1	2	2		
49	1	2	1	1		
50	3	4	3	4		

date - 18th January, 2013

(प्रश्नपत्रिका क्र. २)

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
51	2	2	2	3	
52	1	1	1	2	
53	4	3	2	4	
54	3	2	4	1	
55	1	4	2	3	
56	2	1	1	2	
57	4	3	4	1	
58	2	2	3	3	
59	4	3	4	1	
60	2	1	2	2	
61	1	4	1	3	
62	2	4	2	4	
63	3	1	4	2	
64	3	4	2	4	
65	1	2	1	4	
66	4	1	2	1	
67	4	2	3	3	
68	1	4	3	1	
69	4	2	1	1	
70	2	1	4	2	
71	1	2	4	4	
72	2	3	1	2	
73	3	1	3	4	
74	4	3	2	2	
75	4	3	3	3	

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
76	2	2	3	4			
77	1	4	3	3			
78	3	4	4	3			
79	3	3	4	2			
80	2	2	2	4			
81	4	3	1	4			
82	4	3	3	1			
83	3	3	3	3			
84	2	4	2	3			
85	3	4	4	2			
86	3	2	4	3			
87	4	1	2	3			
88	3	1	4	1			
89	2	4	4	2			
90	1	3	3	4			
91	1	1	2	1			
92	2	2	1	1			
93	4	4	1	4			
94	1	4	2	2			
95	1	3	4	4			
96	4	2	1	4			
97	3	1	1	3			
98	1	1	4	2			
99	2	2	3	1			
100	4	4	1	1			
L.		L.	l .	1			

date - 18th January, 2013

महाराह्य आप्रयांत्रिकी (स्थापत्य) स्रेबा मुख्य परीक्षा - 2012

प्रश्नपुस्तिका क्रमांक BOOKLET No.

2012 Code: V01

केंद्राची संकेताक्षरे

परीक्षा दिः १५ व १६ डिसेंबर, २०१2

एकुण प्रश्न :

एकण गुण : 200

शेवटचा अंक

प्रश्नपुस्तिका

स्थापत्य अभियांत्रिकी पेपर - 11

वेळ : 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकड्न लगेच बदलून घ्यावी. परीक्षा-क्रमांक
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सुचनेप्रमाणे न विसरता नमुद करावा
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचुक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नप्रस्तिकेची प्रत/प्रती. किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रजलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

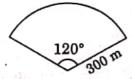
तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

सूचनिविना

पर्यवेक्षकाच्या

1.	A survey	which consists	of observations	of the	heavenly	bodies	such as	Sun	or	any
	fixed star	, is known as								


(1) Celestial Survey

(2) Astrological Survey

(3) Heaven Survey

(4) Astronomical Survey

2. If the radius of simple circular curve is 300 m and intersection angle between two straight lines is 120°, the tangent length of curve is

(1) 173·105 m

(2) 174·305 m

(3) 173·205 m

(4) 175·050 m

3. In the change point procedure, change point is the point of

- (1) the initial position of dumpy level.
- (2) the portion of staff where instrument is shifted.
- (3) the final position of dumpy level.
- (4) None of the above

The process of establishing number of intermediate points between two fixed end points on ground is known as

(1) Ranging

(2) Offsets

(3) Station points

(4) Auxiliary points

5. The latitude of a line of closed traverse is its length multiplied by

- (1) tangent of reduced bearing
- (2) sine of reduced bearing
- (3) cosine of reduced bearing
- (4) secant of reduced bearing

6. When lines come close together in a contour map, it indicates

(1) Hill

(2) Reservoir

(3) Steep slope

(4) Flat slope

7.	In geodetical observations, the correction for refraction is
	(1) subtractive to both the angle of elevation and the angle of depression
	(2) additive to both the angle of elevation and the angle of depression
1.7	(3) subtractive to the angle of elevation and additive to the angle of depression
	(4) additive to the angle of elevation and subtractive to the angle of depression
8.	A road section of length 2 km scales 9 cm on a vertical photograph. The focal length
î	of the camera is 180 mm. If the terrain is fairly level, then the flying height will be (1) 40 m (2) 4000 m
	(3) 40 km (4) 400 km
	(4) 400 km
9.	The process of determining the location of the station (on the map) occupied by the
2.5	plane table is
	(1) Intersection (2) Two-point problem
	(3) Resection (4) Traversing
10.	The area of irregular plotted figure can be easily determined by using instrument
	named as
\	(1) Pentagraph (2) Planimeter
	(3) Subtense bar (4) Vernier
11.	In case of a truly vertical photographic survey, which of the following points coincide?
EW NO	I. Principal point
	II. Isocentre
	III. Plumb point
	(1) I and II only (2) I and III only
	(3) II and III only (4) I, II and III
12.	Measurement of discharge of river usually forms a part of
ngi.	(1) Topographic surveying (2) Hydrographic surveying
	(3) Geodetic surveying (4) Route surveying
13.	A total station is an instrument consisting of the combination of
H.	(1) prismatic compass, theodolite and dumpy level
	(2) auto level, tacheometer and compass
	(3) electronic theodolite and electronic distance meter
	(4) digital planimeter with auto level
-	

14.	The	most	reliable	estimate	18
		_			

(1) Detailed estimate

- (2) Preliminary estimate
- (3) Plinth area estimate
- (4) None of these

15. While computing masonry work, no deductions are generally made for

- (1) opening each up to 0.10 sq. m
- (2) ends of beam up to 0.05 sq. m
- (3) bed plates and wall plates up to 10 cm
- (4) All the above

16. The estimated quantity of cement required per m³ in a compacted cement concrete of 1:2:4 nominal mix is

(1) 305 kg

(2) 330 kg

(3) 285 kg

(4) 255 kg

17. Identity correct statements from the following:

- Centre line method is the most common method for calculating the quantities of walls.
- b. Centre line method is suitable for determining quantities of walls which are curved in plan.
- c. Out-to-out and in-to-in method is the most common method for calculating quantities of walls.
- (1) a and b

(2) a and c

(3) a only

(4) b and c

18. Annual income from a property is ₹ 25,000. The capitalized value of this property for a prevailing rate of 12.5% interest is

(1) ₹ 5,00,000

(2) ₹ 2,00,000

(3) ₹ 2,50,000

(4) ₹ 3,12,000

19.	can utilise the same in any manner he	e likes	ssession of the property, and the owner subject to the rules and regulations of
	Govt. and local authorities is known as	3	See - 1 - Called to go . 5 -
	(1) Leasehold property	(2)	Saleable property
	(3) Freehold property	(4)	Absolute property
			ក្នុងវិទី ខេត្តស្រាក 🏢
20.	Which of the following documents notice?	will no	of be required for drafting the tender
, ,	(1) Nature of work and its location		ale willing the
,	(2) Estimated cost of the work	4 5	
	(3) Mode of submitting tender	nile s	popular reduction of the
	(4) Schedule 'A' of the proposed work		in the state of th
21.	In case of beams, the ratio of breadth	to dept	h is usually taken as
	(1) 0.5 to 0.7	(2)	0.9 to 1.0
10 4	(3) 1·2 to 1·4	(4)	1.8 to 2.0
		91	
22	Assertion (A): Rate analysis is car structure or building		ut to work out the actual cost of the
	Reason (R): Rate analysis is carr	ried ou	t to revise the schedule of rates.
	State whether	n et e	
	(1) Both A and R are true	(2)	A is true and R is false
1-1	(3) A is false and R is true	(4)	Both A and R are false
23.	Which value of asset will fetch more m	oney f	rom market ?
	(1) Distress value	(2)	Monopoly value
:	(3) Sentimental value	(4)	Potential value
SPA	CE FOR ROUGH WORK		DEPOSIT STREET STATE

24.		n improvement of Indian Standard Soil Classification system over Unified Soil sification system was						
	(1) division of fine-grained into four groups and inclusion of peat.							
	(2)	division of fine-grained soil portion into six groups.						
	(3)	division of fine-grained soil portion into six groups and inclusion of peat.						
10	(4)	division of fine-grained soil based on compressibility.						
25.		maximum vertical stress occurs when the angle made by the polar ray attains a e corresponding to value of $\frac{r}{2}$ equal to						
Sec. 11	(1)	39° 13′ 53·5″ and 0·817 (2) 39° 13′ 53·5″ and 0·488						
- 19 - 18	(3)	33° 33′ 33″ and 0.817 (4) 33° 33′ 33″ and 1.000						
ų V	4,	of the second of the second problem of the second problem.						
26.	The	shear strength of loamy soil depends upon						
	(1)	internal friction						
	(2)	cohesion						
9.5	(3)	both internal friction and cohesion						
	(4)	neither internal friction nor cohesion						
27.	The	mechanics of consolidation was demonstrated by Terzaghi by means of						
	(1)	Newmark's influence chart (2) Spring analogy						
	(3)	Isobar diagrams (4) Pressure bulb						
		and the state of t						

(2)

(4)

position of water table

type of soil

Bearing capacity of soil is not influenced by

shape and depth of footing

(3) overcoming load on footing

29.	Larg	ge movement of retaining structure is requ	uired to produ	ice.	The sales
	(1)	active earth pressure		delle je i siqu	
	(2)	passive earth pressure	Section 1		335
	(3)	both active and passive earth pressures	i i i i i i i		
	(4)	at rest pressure	3, 5 (444) 36	Selection and the selection of the selec	
		and the state of t		ALTO ME	
90	UZ.	on the allowable will proposed the collection	والمرافعة والماري	held to one	
30.		en the allowable soil pressure is low or bundation is	mang loads a	re neavy, s	intable type of
			Doft fasting		
n de la	(1)	Strap footing (2)	Raft footing	ules minut	35
	(3)	Spread footing (4)	Combined for	oting	
					*;
31.	A no	ormally consolidated clay stratum 5 m deep	is underlain	by hard roc	k. The average
	effe	ctive overburden pressure before and after	construction	was 25 KPa	and 250 KPa.
8	The	laboratory tests on this strata indicated:	natural moistu	ire content o	f 50%, specific
	grav	vity of '3' and liquid limit of 54%. The cons	olidation settl	ement of thi	s layer will be
	near	rly equal to			
	(1)	0·4 m (2)	0.8 m		
	(3)	1·6 m (4)	2·0 m	armid y	
-			•		Out of
00	m.				
32.	The	allowable load on a pile from pile load te	st is calculate	a as	
	(1)	50% load corresponding to a settlement	of 10% pile di	ameter	- 14
	(2)	$\frac{2}{3}$ of load corresponding to a settlement	of 12 mm	-	
	(3)	50% load corresponding to a settlement	of 25 mm	eo i ii	a mode the
	(4)	lesser of (1) and (2)	Transfer and	n Santa	47, 411
	(4)	lessel of (1) and (2)			
			,	and the second	7 7 5
33.	Pne	umatic cassions are preferred in situation	s where the s	oil flow into	the excavated
	area	a is than it can be removed	d.	le vargaly	S. meial. Pu
	(1)	slower (2)		ne lan un	
	(3)	initially faster (4)	initially slov	ver	
	1			X. I	
CDA	CE FO	OR ROUGH WORK	101 -12	argoles Halle	OPF HUY BARE

Surface tension is a phenomenon due to

	(1)	cohesion only
	(2)	viscous force
	(3)	adhesion between liquid and solid molecules
	(4)	difference in magnitude between the forces due to adhesion and cohesion
35.		object weighs 100 N in air and 75 N in water when fully submerged in it. The
	(1)	4.0 (2) 4.5
	(3)	2.5 (4) 1.25
36.	A fl	low of fluid has diverging straight streamlines. If the flow is steady, the flow
	(1)	is a uniform flow with local acceleration
	(2)	has convective normal acceleration
	(9)	has assumed that the manufacture of the same of the sa
	(3)	has convective tangential acceleration
	(4)	has convective tangential acceleration has convective normal as well as tangential accelerations
37.	(4)	has convective normal as well as tangential accelerations
37.	(4)	has convective normal as well as tangential accelerations head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new
37.	(4) The	has convective normal as well as tangential accelerations head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is
	(4) The disc (1) (3)	has convective normal as well as tangential accelerations head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is 1.414 (2) 2.000
	(4) The disc (1) (3)	has convective normal as well as tangential accelerations the head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is 1.414 (2) 2.000 4.000 (4) more than 4.000
	(4) The disc (1) (3) For (1)	has convective normal as well as tangential accelerations the head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is 1.414 (2) 2.000 4.000 (4) more than 4.000 a given open channel carrying a certain discharge, the critical depth depends on
38.	(4) The disc (1) (3) For (1) (3)	has convective normal as well as tangential accelerations the head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is 1.414 (2) 2.000 4.000 (4) more than 4.000 a given open channel carrying a certain discharge, the critical depth depends on the geometry of the channel (2) the viscosity of the liquid
38.	(4) The disc (1) (3) For (1) (3)	has convective normal as well as tangential accelerations the head over a 90° V-notch increases from 0.20 m to 0.40 m. The ratio of the new charge to the original discharge is 1.414 (2) 2.000 4.000 (4) more than 4.000 a given open channel carrying a certain discharge, the critical depth depends on the geometry of the channel (2) the viscosity of the liquid the roughness of the channel (4) the longitudinal slope of the channel
38.	(4) The disc (1) (3) For (1) (3)	has convective normal as well as tangential accelerations head over a 90° V-notch increases from 0·20 m to 0·40 m. The ratio of the new charge to the original discharge is 1·414 (2) 2·000 4·000 (4) more than 4·000 a given open channel carrying a certain discharge, the critical depth depends on the geometry of the channel (2) the viscosity of the liquid the roughness of the channel (4) the longitudinal slope of the channel
38.	(4) The disc (1) (3) For (1) (3) In f (1)	has convective normal as well as tangential accelerations the head over a 90° V-notch increases from 0·20 m to 0·40 m. The ratio of the new charge to the original discharge is 1·414 (2) 2·000 4·000 (4) more than 4·000 a given open channel carrying a certain discharge, the critical depth depends on the geometry of the channel (2) the viscosity of the liquid the roughness of the channel (4) the longitudinal slope of the channel flow through pipe bends, the pressures on inner and outer radii do not vary and are same as at center of pipe

- 40. The fluid flow in the model and the prototype will be dynamically similar if
 - (1) the forces in the two systems are same
 - (2) the two systems are geometrically similar
 - (3) the two systems are kinematically similar
 - (4) the forces at similar points in the two systems have same ratio throughout the flow field
- 41. The main function of the surge tank is to
 - (1) restrict the water hammer effects to small length of penstock
 - (2) provide a free water surface near turbines
 - (3) act as a reservoir
 - (4) protect the penstock from bursting
- 42. In all reaction turbines, the following conditions should be satisfied for maximum efficiency:
 - (1) The velocity of whirl at entrance must be zero
 - (2) The velocity of flow at outlet must zero
 - (3) Velocity of whirl at outlet must be zero
 - (4) Velocity of flow at entrance must be zero
- 43. In centrifugal pump, the inlet angle will be designed to have
 - (1) relative velocity vector in radial direction
 - (2) absolute velocity vector in radial direction
 - (3) velocity of flow to be zero
 - (4) peripheral velocity to be zero

Α			11		V01				
44.	Inε	a hydrological cycle, the average res	idence	time of water in the global					
	(1) atmospheric moisture is larger than that in the global rivers								
	(2)								
	(3)								
	(4)	oceans is larger than that of the	global	groundwater					
45.	An	isohyet is a line joining points havi	ng	of the papers, of	- :				
	(1)	equal evaporation value			7				
	(2)	equal barometric pressure	ā.	1					
	(3)	equal height above the MSL							
	(4)	equal rainfall depth in a given du	ration	A probablica in range.					
46.	Ant	icyclone is a		er siderig 15 B					
	(1)								
	(2)								
	(3)								
9	(4) zone of low pressure with anticlockwise winds in the northern hemisphere								
47.	Hydrograph is a graph which shows the variation of discharge with								
	(1)	rainfall	(2)	time	10				
	(3)	runoff coefficient	(4)	rainfall excess					
48.	If th	ne maximum depth of a 50 years – 1	5h rair	afall depth at Bhubaneshwar is 260	mm,				
	the	50 year-3h-maximum rainfall depth	at th	e same place is					
	(1)	< 260 mm	(2)	> 260 mm					
	(3)	= 260 mm	(4)	None of the above					
49.	A catchment was found to have a \$\phi\$-index of 0.6 cm/h in winter season. If a rainfall of								
	3 cn	n occurs in that season at a uniform	rate in	a 6 h storm, the resulting direct	runoff				
	is			* TE 103 PE					
	(1)	0-6 cm	(2)	– 0·6 cm					
	(3)	0 cm	(4)	6-6 cm					
50.	Indi	icate the incorrect statement out of	followi	ng four statements in which PET's	tande				

- for Potential Evapotranspiration:
 - (1) PET depends essentially on climatic factors and is not critically dependent on soil and plant factors.
 - PET is same as the consumptive use of an irrigated crop. (2)
 - Decrease in PET of an area on the basis of mean annual value reflects an increase (3) in runoff.
 - The ratio of PET to lake evaporation is always greater than unity. (4)

51.	The process by which plants dissipate water from the surface of their leaves, stall	ks
	and trunks in known as	

(1) evaporation (2)evapo-transpiration

(3)delta (4)conjunctive use

52. Match the following lists:

List I

(Plot of)

- Accumulated precipitation vs a. time in chronological order
- Rainfall intensity vs time b.
- Stream flow vs time in chronological order
- Steam discharge vs percent time d. the flow is equalled or exceeded
- b. а IV II III (1) (2)IV II Ш Ι
- ·IV I (3) II
- IV (4) II

List II

(Name)

- Hydrograph
- II. Hyetograph
- III. Flow-duration curve

If a soil has an infiltration capacity of fc, actual infiltration rate f is given by

 $f < f_c$ when i < f

(2) f = i when $i > f_c$

 $f = f_c$ when $i < f_c$

(4) $f < f_c$ when i > f

(where i = Rainfall intensity in above options)

- The chemical that is found to be most suitable as water evaporation inhibitor is 54.
 - (1) ethyl alcohol

(2)methyl alcohol

(3) cetyl alcohol (4) butyl alcohol

A peak ordinate of a 4-h unit hydrograph for a catchment is 80 m³/s. The peak ordinate of an 8-h unit hydrograph for the same catchment will be

(1) $> 80 \text{ m}^3/\text{s}$

 $= 80 \text{ m}^3/\text{s}$ (2)

(3). $< 80 \text{ m}^3/\text{s}$

(4) Data inadequate

SPACE FOR ROUGH WORK

56.	Conjunctive use of water in a basin means (1) the sum of evapo-transpiration and the amount of water used up in plant metabolism.							
	(2) combined use of surface and ground water resources.							
	(3) combined use of water for irrigation and hydropower generation.							
	(4) the sum of evapo-transpiration and infiltration losses.							
57.	The moisture content of the soil after free drainage removes most of the gravity water							
•	is known as (1) Wilting point (2) Available mainture							
	(1) Wilting point (2) Available moisture							
	(3) Saturation capacity (4) Field capacity							
58.	If the duty on crop is reduced the irrigated area will be							
	(1) less (2) more							
	(3) does not depend on duty (4) None of the above							
59.	For the irrigation of a crop, the base period is 100 days and delta is 150 cm. Then the duty in ha/m ³ . s on the field is							
	(1) 5.76 (2) 576 (3) 0.576 (4) 13.06							
60.	The ratio of the quantity of water stored in the root zone of the crop to the quantity of water actually delivered in the field is known as							
	(1) water conveyance efficiency (2) water application efficiency							
	(3) water use efficiency (4) water storage efficiency							
61.	Consumptive use for a particular crop is defined as							
	 (1) water used by plant in transpiration only (2) water used in evaporation from adjacent soils and plant leaves 							
	(3) water used by plant in transpiration and evaporation also							
	(4) None of the above							
	TITLE CALL AND							
62.	Which of the statements given below are correct?							
	In the check-basin method of irrigation							
	 a. the ridges interfere with the movement of tractor drawn implements. b. considerable land is wasted by ridges and lateral channels. 							
	, and a second of the second o							
	 the surface drainage is unhindered and as such, is excellent. is unsuitable for growing crops which are sensitive to wet-soil conditions around 							
	 is unsuitable for growing crops which are sensitive to wet-soil conditions around their stem. 							
	(1) a, b and c (2) a, b and d (3) a, c and d (4) b, c and d							

63.	The maximum application rate of sprinklers is limited by
	(1) the infiltration capacity of the soil
1.5	(2) the prevailing wind velocity
	(3) the quantity of water available
	(4) the prevailing humidity and radiation
64.	Leaching is the process in which
	(1) water table is lowered by using pumps
. ,	(2) land is flooded with adequate depth of water to reduce salts in the top layer
	(3) land is flooded with adequate depth of water to reduce salts in the bottom layer
	(4) None of the above
65.	An irrigant has the ionic concentrations of Na ⁺ , Ca ⁺² and Mg ⁺² as 30, 10 and 8 meq/L
	respectively. The Sodium Adsorption Ratio (SAR) of this water is
	(1) 0.10 (2) 3.33 (3) 10 (4) 1.66
66.	A land is known as waterlogged when
	(1) gravity drainage has ceased
	(2) permanent wilting point is reached
	(3) the soil becomes completely saturated
	(4) capillary fringe reaches the root zone of the plants
67.	An aqueduct means
	(1) passing canal below the drainage
	(2) passing canal below the road
	(3) passing the drain through the canal
	(4) passing the canal over the drainage
68.	The uplift pressure is reduced in a gravity dam when a drainage gallery
	with its drainage pipe system is provided.
	(1) at all levels below the upstream level
Limi	(2) at all levels below the drainage gallery
	(3) at all levels below the downstream level
14. 	(4) at the foundation level only

- 69. In planning surveys for highways, which of the following studies is concerned with collection of details about the trend of population growth?
 - (1) Engineering studies
- (2) Economic studies

(3) Financial studies

- (4) Traffic studies
- 70. Which of the following statements gives the most suitable meaning of highway alignment?
 - (1) Fixing the direction of highway
 - (2) Deciding the radius of horizontal and vertical curves
 - (3) Determining the gradient of volley and summit curves
 - (4) Layout of the centre line of the highway on ground
- 71. Which of the following values is recommended by IRC as longitudinal friction coefficient for calculation of the stopping sight distance?
 - (1) 0.05 to 0.10

(2) 0.15 to 0.20

(3) 0.25 to 0.30

- (4) 0.35 to 0.40
- 72. Which of the following terms represents cross slope provided to the road surface to drain off the rainwater?
 - (1) Shoulder

(2) Camber

(3) Kerb

- (4) Drain
- 73. Width of the carriageway for single lane as standardised by IRC is
 - (1) 2·44 m

(2) 2·50 m

(3) 3·50 m

- (4) 3·75 m
- 74. The mechanical widening of pavement required on horizontal curve along a two traffic lane road is given by which of the following equations?
 - $(1) \quad W_{\rm m} = l^2/2R$

 $(2) \quad W_{\rm m} = l^2/R$

 $(3) \quad W_{\rm m} = 2l^2/R$

 $(4) \quad W_{\rm m} = l^2/\sqrt{R}$

75.		s not desirable to provide transition ves ?	n cur	ve on which of the following types of
	(1)	Summit curves	(2)	Valley curves
	(3)	Sharp curves	(4)	Steep curves
76.		raffic engineering, which of the followiew method?	lowing	g information is collected by road side
	(1)	Origin and destination data	(2)	Traffic capacity data
	(3)	Traffic volume data	(4)	Parking studies
77.	СВІ	R test is developed to evaluate which	h of th	he following?
	(1)	Shearing resistance of soil	(2)	Modulus of subgrade reaction
	(3)	Stability of soil subgrade	(4)	Stress - strain relationship of soil
78.	To sout (1) (3)		(2) (4)	c, which of the following tests is carried Crushing test Soundness test
	: 0			80 1 4 4 4
79.		delines of design of flexible pavement codes ?	t are	recommended in which of the following
	(1)	IRC 29	(2)	IRC 37
	(3)	IRC 58	(4)	IRC 86
	141			The state of the s
80.		per IRC recommendations for design ement concrete used in the pavemen		ncrete pavements, the flexural strength ould not be less than
	(1)	6 kg/cm ²	(2)	24 kg/cm ²
	(3)	30 kg/cm ²	(4)	40 kg/cm ²
SPA	CE FO	OR ROUGH WORK		STACE FOR SOURCE WORLD'S BOARS

	A small bridged passage for the conveyance of water, under the road, from one side of the roadway to the other side is known as			
	(1)	Underground drain	(2)	Channel
	(3)	Aqueduct .	(4)	Culvert
82.		flux is more, scour depth		. Same S.V.
	(1)	will be less	(2)	will be more
	(3)	will have no effect on it	(4)	None of the above
83.	IRC (1)	recommendations for minimum wid 1.0 m (2) 1.5 m		footpath on bridge is 2.0 m (4) 2.5 m
84.	IRC (1) (2)	standard loading for bridge designs Class A, Class B, Class AB and Cla Class A, Class B, Class AB and Cla	ass 70	the second secon
	(3)	Class A, Class B, Class BB and Class A, Class B,		The state of the s
	(4)	Class A, Class B, Class AA and Cla	ass 70	J-R
85.	The type of bearing used on a bridge, depends on			
	(1)	Amount of movement of the bridge	_	
	(2)	Temperature variations	1000	
	(3)	Load carried		the state of the s
•	(4)	All of the above		the second
86.	Abutment piers are provided in multiple span			
	(1)	Arch bridges	(2)	Submersible bridges
	\-/	O .		
	(3)	Temporary bridges	(4)	Suspension bridges
87.	The of cr	Temporary bridges difference between the designed H rown of road at its lower point, wheth	F.L. a	allowing for afflux, if any, and the level
87.	(3) The	Temporary bridges difference between the designed H.	F.L. a	allowing for afflux, if any, and the level
87.	The of cr	Temporary bridges difference between the designed H rown of road at its lower point, wheth	F.L. a ner on	allowing for afflux, if any, and the level the bridges or its approaches, is known
87.	(3) The of cr as (1) (3)	Temporary bridges difference between the designed H. rown of road at its lower point, wheth	F.L. and the reconstruction (2) (4)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board
	(3) The of cr as (1) (3)	Temporary bridges difference between the designed H. rown of road at its lower point, wheth Head room Highest water level	F.L. and the reconstruction (2) (4)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board
	(3) The of cras (1) (3) Cul- (1)	Temporary bridges difference between the designed H. rown of road at its lower point, wheth Head room Highest water level verts are provided for linear waterwa 6 m (2) 9 m	(2) (4) (3)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board to maximum of
88.	(3) The of cras (1) (3) Cul- (1)	Temporary bridges difference between the designed H. rown of road at its lower point, wheth Head room Highest water level verts are provided for linear waterwa 6 m (2) 9 m	(2) (4) (3)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board to maximum of 12 m (4) 15 m
88.	(3) The of cr as (1) (3) Cult (1) A th	difference between the designed H. rown of road at its lower point, wheth Head room Highest water level vefts are provided for linear waterwa 6 m (2) 9 m	F.L. and (2) (4) ay up (3)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board to maximum of 12 m (4) 15 m
88.	(3) The of cr as (1) (3) Cult (1) A th (1) (3)	difference between the designed H. rown of road at its lower point, wheth Head room Highest water level verts are provided for linear waterwa 6 m (2) 9 m nin wall used as a shield or protection Baffle wall	F.L. and (2) (4) (3) (3) (2)	the bridges or its approaches, is known Free room Free board to maximum of 12 m (4) 15 m sinst scouring action of stem is called Dwarf wall
88.	(3) The of cr as (1) (3) Cult (1) A th (1) (3)	difference between the designed H. rown of road at its lower point, wheth Head room Highest water level verts are provided for linear waterwa 6 m (2) 9 m nin wall used as a shield or protection Baffle wall Curtain wall	F.L. and (2) (4) (3) (3) (2)	allowing for afflux, if any, and the level the bridges or its approaches, is known Free room Free board to maximum of 12 m (4) 15 m ainst scouring action of stem is called Dwarf wall

	2009	-	(4	21 40 TE	cional Ambient Air Quanty Standards
	(1)	Ozone	D. 104, 191.	(2)	Benzene
- 4	(3)	Mercury		(4)	Arsenic
92.		fire demand fo	or a population	of 1·5	lakh as per the recommendation of
	(1)	1800 litre/min		(2)	3600 litre/min
	(3)	5400 litre/min	-4 (**	(4)	7200 litre/min
93.	a. b. c.	The effective siz Backwashing is The suspended	ze of filter medium carried out by air	scouri	and filters in water treatment: 5 mm to 0.35 mm. ng followed by water washing. e surface on biofilm mat. s ?
	(1)	a and b		(2)	a, b and c
	(3)	a and c		(4)	b and c
94.			ent Air Quality S ercial areas respe		ds in respect of noise in daytime for
	(5)				
	(1)	75, 65 dB(A) Le	q.	(2)	75, 70 dB(A) Leq.
	(1)	75, 65 dB(A) Le 75, 55 dB(A) Le	No. 18 (AVI) 41	(2)	75, 70 dB(A) Leq. 65, 55 dB(A) Leq.
95.	The Init	75, 55 dB(A) Le following data p ial dissolved oxyg al dissolved oxyge ation ratio = 0.02	ertain to a sewag gen = 6 mg/L en after 5 days =	(4) e samp	65, 55 dB(A) Leq.
95.	The Initiation of the Initiati	75, 55 dB(A) Le following data p ial dissolved oxyg al dissolved oxyge ation ratio = 0.02	ertain to a sewag gen = 6 mg/L en after 5 days =	(4) e samp	65, 55 dB(A) Leq.

	(1)	Rotating Biological Contactor (2) Activated Sludge Process										
ič .	(3)	Aerated Lagoon (4) Waste Stabilization Pond										
97.	Whi	ch of the following pairs is/are correctly matched?										
	a.	Trickling filter - Attached growth anaerobic treatment system										
	b.	Activated sludge process - Suspended growth aerobic treatment system										
	c.	Oxidation pond - Suspended growth aerobic treatment system										
	d.	Oxidation ditch - Modified activated sludge process										
	(1)	a, b and c (2) b, c and d										
	(3)	b and d (4) a, b, c and d										
_												
98.	Fact	ors that influence sedimentation process are										
	(1)	1) size, viscosity, density and temperature of water										
	(2)	2) surface overflow rate, detention time										
	(3)	inlet and outlet characteristics, depth of settling										
	(4)	All the above										
99.	Whi	ch of the following statements are correct?										
	a.	The burning of gasoline fuel emits carbon monoxide.										
4 -41	b.	Sulphur dioxide is formed from coal burning.										
. 7	c.	The burning of tyres results in hydrocarbons.										
	(1)	a and b (2) a and c										
	(3)	b and c (4) a, b and c										
100.		at is the standard for $E.\ coli$ as per Drinking Water Quality Standards 10500 ?										
- 1	(1)	10/100 mL (2) 5/100 mL										

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य)- परीक्षा -२०१२ परीक्षेचा दिनांक: १५ व १६ डिसेंबर,२०१२ विषय : (प्रश्नपत्रिका क्र. ३) स्थापत्य अभियांत्रिकी - पेपर क्र.२

महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य) परीक्षा-२०१२ यास्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका

प्रश्न		त्तरे			
क्रमांक	संच A	संच B	संच C	संच D	
1	4	3	2	3	
2	3	2	1	3	
3	2	3	3	4	
4	1	2	3	3	
5	3	4	4	2	
6	3	2	3	1	
7	3	3	3	2	
8	2	4	2	3	
9	3	3	4	3	
10	2 2 2		2		
11	4	1	3	3	
12	2	3	3	2	
13	3	3	2	4	
14	1	3	4	3	
15	4	4	2	3	
16	1	1	1	3	
17	4	3	4	4	
18	2	3	1	1	
19	3	1	3	4	
20	4	4	3	2	
21	1	1	3	1	
22	3	4	4	4	
23	3	2	1	1	
24	3	2	2	3	
25	1	2	4	2	

प्रश्न		उत	त्तरे		
क्रमांक	संच A	संच B	संच C	संच D	
26	3	2	2	3	
27	2	4	2		
28	3	2	2	1	
29	2	3	3	4	
30	2	1	2	2	
31	2	3	3	2	
32	4	2	3	2	
33	2	3	1	2	
34	4	4	3	1	
35	1	1	2	3	
36	3	3	4	4	
37	4	2	1	1	
38	1	4	1	3	
39	3	1	3	4	
40	4	3	4	2	
41	1	4	1	4	
42	3	1	3	1	
43	2	3	4	3	
44	4	2	3	3	
45	4	1	3	4	
46	2	1	2	4	
47	2	3	1	4	
48	1	3	1	2	
49	3	4	3	2	
50	4	4	4	1	

-1

date - 18th January, 2013

(प्रश्नपत्रिका क्र. ३)

प्रश्न	उत्तरे								
क्रमांक क्रमांक	संच A	संच B	संच C	संच D					
51	2	2	4	3					
52	1	2	4	2					
53	1	1	2	1					
54	3	3	2	1					
55	3	4	1	3					
56	2	1	3	4					
57	4	2	2	4					
58	1	3	2	1					
59	2	4	4	1					
60	2	4	1	2					
61	3	1	2	3					
62	2	2	2	4					
63	1	4	4	1					
64	2	1	1	2					
65	3	2	1	2					
66	4	2	2	3					
67	4	3	3	2					
68	1	2	4	2					
69	2	1	2	4					
70	4	1	4	2					
71	4	3	1	2					
72	2	4	1	4					
73	4	2	3	4					
74	2	4	4	2					
75	1	2	2	2					

		70	त्तरे	
प्रश्न		Ģ(· · ·	
क्रमांक	संच A	संच B	संच <i>C</i>	संच D
76	1	4	4	4
77	3	4	2	1
78	4	2	2	1
79	2	4	4	3
80	4	2	4	4
81	4	2	4	3
82	2	2	4	4
83	2	4	1	2
84	4	4	4	4
85	4	1	3	2
86	1	4	4	2
87	4	3	2	4
88	3	4	4	4
89	4	2	2	1
90	2	4	2	4
91	3	1	1	1
92	3	3	2	3
93	3	4	3	1
94	1	1	3	3
95	2	3	3	4
96	1	3	1	1
97	3	3	3	2
98	4	3	1	3
99	1	1	3	3
100	3	2	4	3

date - 18th January, 2013

न्दो

उघड

वेळ : 2 (दोन) तास

2013

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

एकूण प्रश्न : 100

पेपर-1

एकूण गुण: 200

शेवटचा अंक

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

↑ केंद्राची संकेताक्षरे

- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकार उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे**. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले <mark>उत्तर खोडून नव्याने उत्तर दिल्यास ते तपास</mark>ले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुर्रविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रक्षमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

1.	Consider the following statements:											
	(a)	The melting poir	nt of m	ild steel i	s 1400	°C						
	(b)	The ultimate con	npress	ive streng	th of 1	nild steel is 80 to 1	20 KN/cm	2				
	Nov	w state whether :										
	(1)	(a) True, (b) False	e	(2)	(a) I	False, (b) False						
	(3)	(a) True, (b) True	2	(4)	(a) I	False, (b) True						
2.	The bearing capacity of soil can be determined by :											
	(1)	(1) method of loading				plate load test						
	(3)	both (1) and (2)			(4)	none of the abov	e					
3.	For	what span is the Q	ueen l									
	(1)	5 to 9 m			(2)	9 to 14 m						
	(3)	14 to 18 m			(4)	none of the aobv	e					
4.	What is a Header as seen in elevation of wall?											
	(1)	Longer face of brick										
	(2)	Horizontal distar	nce bet	ween ver	tical jo	oints of successive	brick cour	ses				
	(3)	Lower surface of	brick	when laid	l flat							
	(4)	Shorter face of b	rick									
5.	What is the temperature range in the low temperature tempering process?											
	(1)	150°C to 200°C			(2)	200°C to 250°C						
	(3)	100°C to 150°C			(4)	250°C to 300°C						
6.	In si	ite exploration, me	thod o	f open tri	al pits	is adopted upto a	depth of :					
о.			(2)	6 m		(3) 10 m	(4)	15 m				

JO2	4												
7.	A d	A distemper is composed of a base with :											
	(1)	Chalk	(2)	Water		(3)	Casein	(4)	Glue				
8.	What causes Bulking of sand ?												
	(1)	Surface moistu	ıre		(2)	Clay	content		77.				
	(3)	Air voids			(4)	Visc	cosity						
9.	For	what span is the	king p	oost roof tr	uss sui	table :							
	(1)	5 to 9 m			(2)	9 to	14 m						
	(3)	14 to 18 m			(4)	none	e of the above						
10.	The reflected sound concentrated at one point creates a spot which is known as :												
	(1)	Dead spot	(2)	Sound fo	oci	(3)	Sound echo	(4)	Accostics				
11.	The common criterion for size of doors used in India is :												
	(1)	Width = {0.40	to 0.60)} height	(2)	Heig	ght = {width +	- 1.2 me	eter)				
	(3)	Both (1) and (2	2)		(4)	None of the above							
12.	What is the recommended slump value for rigid pavement construction ?												
	(1)	40 to 50 mm	(2)	10 to 25	mm	(3)	25 to 50 mm	(4)	20 to 40 m	m			
13.	What is strengthening the shallow foundations of an existing building called ?												
	(1)	Scaffolding	(2)	Staging		(3)	Underpinning	g (4)	Bracing				
14.	Wha	at is the average	thickn	ess of first	coat of	f ceme	ent mortar plast	er on b	rick masonry	7?			
	(1)	10 mm	(2)	8 mm		(3)	20 mm	(4)	12 mm				
	or =	on novemen	ont										

Α					5				JO			
15.	Wh	at is the Diar	nond bit u	sed as cu	itting too	l in co	ore drilling c	alled ?				
	(1)	Shot	(2)	Bort		(3)	Port	(4)	Bortz			
16.	Hov	w is the Zone	e between	parallels	of lattitu	de 23	° 27'N and 2	23° 27′S kno	own as ?			
	(1)	Torrid Zor	ne		(2)	Nor	th Temperat	te Zone				
	(3)	South Ten	perate Zor	ne	(4)	Nor	th Frigid Zo	ne				
 17.		In a flitched beam, one section is reinforced with another section. The purpose of such composite beam is to improve										
	(1)	Shear force	over the	section	(2)	Mon	nent of Res	istance ove	r the section			
	(2)	Appearance	e of the se	citon	(4)	All	of these					
	(3)											
18.	A co			xed at bo	ottom and	d hing	ed at top th	en the equi	ivalent length			
18.	A co	olumn of len		xed at bo	ottom and		ed at top th	en the equi	L/v2			
27.5	A co	olumn of lengimn is taken L ircular rod of	(2) length 1m	2L is fixed ped in th	at the to	(3) p and	L/2 a collar is pleasing load	(4) rovided at is 400 MPa				
27.5	A co	olumn of lenumn is taken L ircular rod of antaneous str	(2) length 1m	2L is fixed ped in th	at the to	(3) p and	L/2 a collar is pleasing load	(4) rovided at is 400 MPa	L/v2 the bottom. A			
19.	A cocolumn (1) A circle instruction (1) If a	olumn of length in the length is taken L ircular rod of antaneous strod is 10 mm.	(2) Flength 1m ress develor Find the second (2)	2L is fixed ped in th strain en 10π	at the to se rod due sergy stor	(3) p and e to rel ed in (3)	L/2 a collar is pleasing load the rod. (E=	rovided at is 400 MPa 200 GPa).	L/v2 the bottom. A			
19.	A cocolumn (1) A circle instruction (1) If a	olumn of length imn is taken L ircular rod of antaneous strod is 10 mm. 5π	(2) Flength 1m ress develor Find the second (2)	2L is fixed ped in th strain en 10π	at the to se rod due sergy stor	p and to reled in (3)	L/2 a collar is pleasing load the rod. (E=	rovided at is 400 MPa 200 GPa). (4)	L/v2 the bottom. A . If the diamete			

21. The bulk modulus of an elastic body subjected to normal tensile stresses in all directions (x, y and z) is _____.

Where μ - poisson's ratio and E - young's modulus.

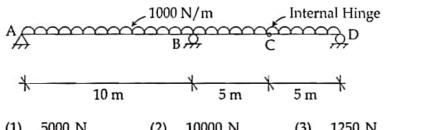
- $\frac{\mu E}{3(\mu 2)}$ (2) $\frac{\mu E}{3(\mu + 2)}$ (3) $\frac{E}{3(1 2\mu)}$ (4) $\frac{E}{2(1 + \mu)}$
- 22. Two bars of the same size but of different materials are subjected to the same tensile force. If the bars have their axial elongation in the ratio of 2:3, the ratio of modulus of elasticity of the two materials will be:
 - 2:3 (1)
- 3:2 (2)
- (3) 6:4
- (4) 4:10
- If a metal bar fixed at either ends is cooled by reducing the temperature by 30°C, the nature of the stresses developed in the bar will be:
 - (1)Tensile

Compressive

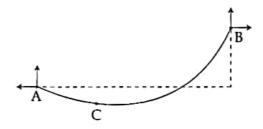
(3)Zero

- (4) None of the above
- 24. A beam of span 'L' is simply supported at ends A and B carries a point load at C at a distance 'a' from A and 'b' from B. If a < b then the maximum deflection will occur :
 - (1)at C

- (2) Between A and C
- Between B and C (3)
- (4) Any where along the span
- A circular bar of length (I) uniformly tapers from diameter (d_1) at one end to diameter (d_2) at the other end. If the bar is subjected to axial tensile force (p) then its elongation is equal to _____ (d₁ > d₂)
- (2) $\frac{PL}{A_1A_2E}$ (3) $\frac{4PL}{\pi Ed_1d_2}$
- $(4) \quad \frac{PL}{4\pi Ed_1d_2}$


- When a body is subjected to the mutually perpendicular stresses (σx and σy) then the 26. centre of the mohr's circle from y-axis is taken as:
 - (1) $\frac{\sigma x + \sigma y}{2}$

(2) $\frac{\sigma x - \sigma y}{2}$


- (3) $\frac{\sigma x \sigma y}{2} + \tau XY$
- (4) $\frac{\sigma x \sigma y}{2} \tau XY$
- What does moment area method find? 27.
 - Bending moment of beam
- Deflection of beam (2)
- Moment of Inertia (3)
- Reactions of beam (4)
- If a body is subjected to a direct normal stress of intensity 'δ' along 'X' direction, then the intensity of maximum shear stress developed on the plane inclined at 45° to line of action of applied stress will be _____.
 - (1) δ
- (2)
- (3) 2δ
- (4) 0
- 29. If a circular shaft of diameter (D) is fixed at one end and subjected to torsional moment (T) at other end, then shear stress developed in shaft is:
 - $16T/\pi D^{3}$ (1)
- (2) $\pi T/16D^3$
- (3) $32T/\pi D^4$
- (4) $16T/\pi D^4$
- Elongation of a circular rod tapering from zero at one end and diameter 'D' at the other 30. end with 'y' as the density and 'L' as the Length due to self weight is _____
- $(2) \quad \frac{L^2}{2\nu E} \qquad (3) \quad \frac{\sigma L}{\gamma E}$
- (4) $\frac{\gamma L^2}{\sigma E}$

SPACE FOR ROUGH WORK

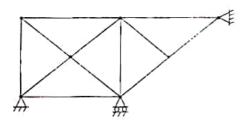
31. The reaction for the support 'B' of a beam loaded as shown in fig. is:

- 5000 N (1)
- 10000 N (2)
- 1250 N (3)
- 15000 N (4)
- 32. In the cable shown in fig the minimum tension occurs at:

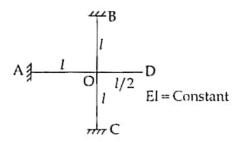
(1)A (2)В

(3)C

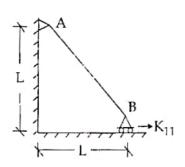
- Between (A) and (C)
- A beam AB of Length 'L' is hinged at its ends and carries a transverse external loading 33. such that the end 'B' is sunk by an amount 'δ'. The fundamental slope deflection equation is:


(1)
$$M_{AB} = \frac{2EI}{L} \left(\theta_A + 2\theta_B - \frac{3\delta}{L} \right) + M_{FAB}$$

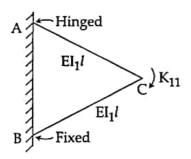
(2)
$$M_{AB} \approx \frac{3EI}{L} \left(2\theta_A + \theta_B - \frac{3\delta}{L} \right) - M_{FAB}$$


$$(3) \quad M_{AB} = \frac{3EI}{L} \left(2\theta_A + \theta_B + \frac{3\delta}{L} \right) - M_{FAB}$$

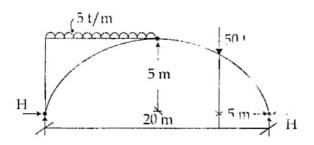
$$(4) \quad M_{AB} = \frac{2EI}{L} \left(2\theta_A + \theta_B - \frac{3\delta}{L} \right) + M_{FAB}$$


34. The degree of static indeterminancy in the frame shown in fig. is:

- (1) 1
- (2) 2
- (3) 3
- (4) Zero
- 35. A steel frame is shown in the figure. If joint 'O' of the frame is rigid, the rotational stiffness of the frame at point 'O' is given by:

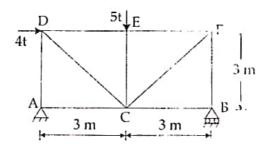

- (1) 11EI/I
- (2) 10EI/1
- (3) 8EI/1
- (4) 6EI/1
- 36. Horizontal stiffness coefficient K_{11} of bar 'AB' is given by :

- (1) $AE/I\sqrt{2}$
- (2) AE/2l
- (3) AE/1
- (4) 2AE/1


SPACE FOR ROUGH WORK

- 37. For a three hinged parabolic arch (span 'l', rise h) carrying a uniformly distributed load w/unit length covering the entire span pick up the correct statement from the following:
 - (1) horizontal thrust is wl2/8h
- (2) S.F. will be zero throughout
- (3) B.M will be zero throughout
- (4) all the above
- 38. In moment distribution method of analysis, the following statement is true:
 - (1) The absolute stiffness of a prismatic bar with far end being fixed is 4EI/L
 - (2) The absolute stiffness of a prismatic bar with far end being simply supported is 3EI/4L
 - (3) The absolute stiffness of a prismatic bar with far end being pin-jointed is 3EI/L
 - (4) All the above
- 39. Rotational stiffness coefficient K_{11} for the frame having two members of equal EI/l is given by :

- (1) 5EI/l
- (2) 6EI/I
- (3) 7EI/1
- (4) 8EI/l

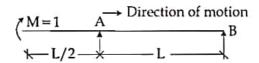

40. A three hinged arch of span 20 m and rise 5 m is loaded as shown in fig. The horizontal thrust 'H' is:

- (1) 75 t
- (2) 100 t
- (3) 125 t
- (4) 50 t

- 41. For which structures Influence lines are drawn?
 - (1) of any type

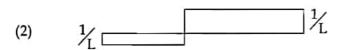
- (2) statically determinate
- (3) pin jointed stress
- (4) none of the above
- 42. The force in member AC of the truss shown in fig. is:

(1) 5t tension


(2) 4t compression

(3) 4t tension

(4) 5t compression


SPACE FOR ROUGH WORK

43. A simply supported beam with an overhang is traversed by a unit concentrated moment from left to the right as shown below :

The influence line for reaction at 'B' is given by

(4) Zero everywhere

44. A two hinged parabolic arch of span 'l' and rise 'h' carries a load varying from zero at the left end and 'w' per unit run at the right end. The horizontal thrust is:

- (1) $wl^2/4h$
- (2) $wl^2/8h$
- (3) $wl^2/12h$
- (4) $wl^2/16h$

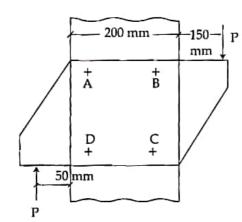
45. A cross section which can develop plastic moment of resistance but have inadequate plastic hinge rotation capacity for formation of plastic mechanism is called as:

- (1) class 1 plastic section
- (2) class 2 compact section
- (3) class 3 semi compact section
- (4) class 4 slender section

46. In plate girder, the web plate is connected to the flange plates by fillet weld. The size of fillet weld is designed to resist:

- (1) The vertical shear force at the section
- (2) The force causing buckling in the web
- (3) The horizontal shear force between flange and web plate
- (4) The bending stress in the flange

- 47. As per IS 800-2007, Tensile strength of a tension member is :
 - (1) Strength corresponding to yielding of gross area
 - (2) Strength corresponding to rupture at critical/net section
 - (3) Strength corresponding to block shear failure
 - (4) Minimum of all of the above
- 48. As per IS 800-2007 design strength of a fillet weld is given by fwd = $\frac{\text{fu}}{\sqrt{3} \text{ ymw}}$, where :
 - (1) fu is ultimate strength of weld and ymw is partial safety factor of weld
 - (2) fu is ultimate strength of parent material and ymw is partial safety factor of weld
 - (3) fu is smaller of ultimate strength of weld or parent material and γmw is smaller of partial safety factor of weld or parent material
 - (4) fu is smaller of ultimate strength of weld or parent material and γ mw is partial safety factor of weld
- 49. On what basis is the thickness of base plate in a column base decided?
 - (1) Flexure in base plate
- (2) Axial compression in base plate
- (3) Axial tension in base plate
- (4) Shear in base plate
- 50. As per IS 875-1984, If $V_z = K_1$. K_2 . K_3 . Vb represents design wind velocity then K_3 is
 - (1) Risk co-effecient
- (2) Terrain, height and size co-effecient
- Topography coefficient
- (4) None of the above
- 51. What is the intensity of imposed load on the plan area of a roof truss with 20° slope?
 Consider that access is not provided except for maintenance:
 - (1) 0.55 kN/m^2


(2) 0.75 kN/m^2

(3) 0.45 kN/m^2

(4) 0.4 kN/m²

SPACE FOR ROUGH WORK

- 52. A secondary beam ISMB 500 transmits end reaction to the web of main beam ISMB 500. Which of the following types of connection is advisable?
 - Frame connection (1)
- (2) Unstiffened seat connection
- (3)Stiffened seat connection
- (4) Bracket connection
- Maximum resultant shear force acting in a critical rivet/bolt for the following arrangement 53.

AB = 120 mm

and BC = 160 mm

- 4P (1)
- (2)p
- 2p (3)
- p/4(4)

54. Match Group - I with Group - II

Group - I

Group - II

- (a) IS 800 - 2007
- General constructions in steel code of practice (i)
- IS 1893 2002 (b)
- (ii) Code of practice for design loads (other than earthquake) for building structures
- IS 875 1987 (c)
- Criteria for earthquake resistance design of structure (iii)
- IS 456 2000 (d)
- Plain and reinforced concrete code of practice (iv)

Answer options:

(a) (b) (d) (c)

(iii)

(iv)

- (i) (1)(ii)
- (2)(i) (iii) (ii) (iv)
- (3)(i) (iii) (iv) (ii)
- (4)(iv) (ii) (i) (iii)
- SPACE FOR ROUGH WORK

55.	A column section is built using two channels keeping back to back at such a spacing that it is equally strong with reference to both the axes. One Engineer suggests lacing while other suggests battens to connect two channels together. Keeping all other parameters same, which of the following is true:										
	(1)	Laced colu	ımn will ca	rry more l	oad th	an bat	tened colum	ນາ			
	(2)	Battened o	olumn will	carry mor	e load	than	laced colum	n			
	(3)	Capacity o	of a column	is indeper	ndent o	of lacii	ng or batten				
	(4)	None of al	ove staten	nents is true	2						
56.		at is the max	imum perr	nissible bea	nring p	ressur	e on concre	e belo	w the	e base plate ir	ıa
	(1)	0.7 √fck	(2)	0.446 fck		(3)	0.67 fck		(4)	0.6 fck	
57.	Which of the following is not a solution to limit the web crippling stresses within their permissible value ?										
	(1)	Increasing	bearing le	ngth	(2)	Sele	cting a bean	with	thick	er web	
	(3)	Providing	a bearing s	tiffener	(4)	Sele	cting a beam	ı with	wide	e flange	
58.	com	As per IS800-2007, the minimum diameter of rivet/bolt for joining compression members composed of two components back to back of thickness 10 mm, upto and including 16 mm is :									
	(1)	16 mm	(2)	22 mm		(3)	12 mm		(4)	20 mm	
59.		For comfortable ascend on stairs, the number of steps in each flight should not be greater than									
	(1)	119	(2)	12		(3)	10		(4)	11	
SPA	CE F	OR ROUGI									

- 60. A RC column 45 cm × 45cm in section and reinforced with longitudinal reinforcement having 20 sq. cm sectional area is 5 m high. It is fixed at the bottom and perfectly free at top. If the max. allowable stresses are 42.2 kg/cm² and 948 kg/cm² in concrete and steel determine max. load carrying capacity:
 - (1) 48.5 tonnes
- (2) 58.5 tonnes
- (3) 65.5 tonnes
- (4) 85.3 tonnes
- 61. In simply supported slab the purpose of providing distribution reinforcement is :
 - (1) To distribute the loads
- (2) To distribute the shrinkage stress
- (3) To distribute the temp stresses
- (4) All of the above
- 62. A T-beam of a roof is 76 cm deep upto centre of tensile steel and has a 152 cm wide flange which is 10 cm thick the width of web is 30 cm. In order to resist a moment of 4.5×10^6 kg cm safely, the minimum area of steel required would be approximately:
 - (1) 10 sq.cm
- (2) 25 sq.cm
- (3) 50 sq.cm
- (4) 100 sq.cm
- 63. For dog legged stair case floor to floor height is 3.2 m, Rise: 160 mm, tread: 250 mm Depth of waist slab: 200 mm, L.L. =3 kN/m² F.F. 1 kN/m² total working load on stair case is about:
 - (1) 18 kN/m²
- (2) 12 kN/m²
- (3) 16 kN/m²
- (4) 20 kN/m²
- **64.** For counterfort Retaining wall, If *l* is clear distance between the counterfort and P is the intensity of soil pressure. The slab is designed for Bending Moments:
 - (1) Maximum + ve Bm and ve Bm is $\frac{PL^2}{16}$ and $\frac{PL^2}{12}$
 - (2) Maximum + ve Bm and ve Bm $\frac{PL^2}{24}$ and $\frac{PL^2}{12}$
 - (3) Maximum + ve Bm and ve Bm $\frac{PL^2}{16}$ and $\frac{PL^2}{8}$
 - (4) Maximum + ve Bm and ve Bm $\frac{PL^2}{24}$ and $\frac{PL^2}{8}$

- 65. In water retaining structures upto 100 mm thickness the minimum reinforcement in walls floors and roofs in each of the two directions at right angle shall have minimum area equal to:
 - (1) 0.03% of the concrete section
- (2) 0.3% of the concrete section
- (3) 0.2% of the concrete section
- (4) 0.12% of the concrete section
- 66. In a retaining wall, keyed expansion and contraction joints should be provided at an interval of :
 - (1) 15 m
- (2) 20 m
- (3) 30 m
- (4) 45 m
- 67. An overhead water tank of capacity 40,000 litres is considered as a:
 - (1) small tank

(2) medium tank

(3) large tank

- (4) very large tank
- 68. While designing the isolated square column, if p' is the net upward reaction, a is the length of one side of the square footing of column of side b and d is the effective depth of footing, then the punching shear is given by:
 - (1) $p'(a^2+b^2)/4ad$

(2) $p'(a^2-b^2)/4bd^2$

(3) $p'(a^2-b^2)/4bd$

- (4) $p'(a-b)^2/4bd$
- 69. A rectangular beam simply supported over a span of 6 m is provided with tensile reinforcement only. The beam 200 mm wide and 365 mm deep (effective) consists of 4 no. 16 φ, the beam carries a load of 8 kN/m inclusive of self weight and m=13. The maximum Bending moment:
 - (1) 36×10^8 N mm

(2) $36 \times 10^7 \text{N mm}$

(3) 36×10^6 N mm

(4) $36 \times 10^4 \text{N mm}$

70.	A RC beam 25 cm \times 50 cm in section has a clear span of 5 m and carries a load of 3000 kg/m it is reinforced with 8 bars of 12 mm dia at the bottom and depth of N.A. below the top is 23 cm. The per bend stress is 10 kg/cm ² . The number of bars that should be bent to take the diagonal tension would be:											
	(1)	02	(2)	03	(3)	04	(4)	05				
71.		ase of RC footing	g on so	oils it is usual	to keep	a minimum o	overall de	pth at the edges				
	(1)	5 cm	(2)	10 cm	(3)	15 cm	(4)	25 cm				
72.	Crit	ical section for sh	near in	case of flat sla	b is at a	distance of :						
	(1) effective depth of slab from periphery of column or drop panel											
	(2) d/2 from periphery of column or capital											
	(3) at the drop panel of slab											
	(4)	at the preipher	y of co	olumn								
73.	The approximate loss of prestress due to the slippage of anchorage in long span prestressed concrete is generally in the range of :											
	(1)	1 to 3 percent		(2	2) 3 to	5 percent						
	(3)	5 to 8 percent		(4) 8 to	12 percent						
74.	300	A pretensioned T-section has a flange of 1200 mm wide and 150 mm thick width of rib 300 mm and depth 1600 mm, fpu = 1392 N/mm ² Apw = 3182 mm ² , $xu = 896$ mm fck = 40 N/mm ² . Flexural strength of the T-section is about :										
	(1)	9125 kN m	(2)	8000 kN m	(3)	7000 kN m	(4)	8250 kN m				

75.	Wha	What is the purpose of reinforcement in prestressed concrete?										
	(1)	to provide ade	quate l	ond stress								
	(2)	to resist tensile	stresse	es								
	(3)	to impart initia	al comp	oressive stre	ss in	concre	ete					
	(4)	all of the above	e									
76.	Mos	st common meth	od of p	restressing	used	for fac	ctory productio	n is :				
	(1)	Long Line Met	hod		(2)	Frey	ssinet system					
	(3)	Magnel Blaton	systen	n	(4)	Lee	- Macall systen	n				
77.		For small span girders with straight tendons approximate thickness of web is. If $vu = 28 \times 10^3 N$, $ft = 1.7 N/mm^2$ depth of girder = 320 mm										
	(1)	44 mm	(2)	60 mm		(3)	75 mm	(4)	30 mm			
78.	150 fpu	A pretensioned prestressed concrete beam having rectangular section 150 mm \times 350 mm deep has an effective cover of 50 mm fck = $40N/mm^2$ fpu = 1253 N/mm ² , Ap = 461 mm^2 , xu=234.9 ultimate strength of the section using IS code is:										
	(1)	116 kN m	(2)	140 kN m		(3)	200 kN m	(4)	190 kN m			
79.	For post tensioned member the minimum 28 day cube strength as per IS code is :											
	(1)	20 N/mm ²	(2)	30 N/mm	2	(3)	40 N/mm ²	(4)	50 N/mm ²			
80.		eccentric tendon stressed beams ir			icular	to the	e plane of conc	rete at th	ne end section in			
	(1)	compression			(2)	bene	ding and comp	ression				
	(3)	compression, b	ending	g and shear	(4)	tens	ion and shear					
SPA	CE F	OR ROUGH W	ORK									

01	A coording to	- IC 12/2 1000	41-0	laca win a	almana	-111		arrand.	
81.	According to	o IS 1343-1980,	me	bearing	stress	Snaii	пот	exceed	
			****	**********					

- 0.48 fci × √Abr/A punch or 0.8 fci
- (2) 0.6 fci × √Abr/A punch or 0.85 fci
- (3) 0.7 fci × √Abr/A punch or 0.8 fci
- (4) 0.48 fci x √Abr/A punch or 0.9 fci

82. In case of prestressed concrete beams (girder) the lever arm is :

- (1) Always constant
- (2) Negligibly small
- (3) Subject to change as the load on the girder changes
- (4) does not exist in the absence of live load

83. In High - tensile steel final stress after allowing for all losses of prestress (As per IS 1343 - 1980):

- (1) Not less than 50% of the characteristic tensile strength of tendons
- (2) Not less than 20% of the characteristic tensile strength of tendons
- (3) Not less than 45% of the characteristic tensile strength of tendons
- (4) Not less than 30% of the characteristic tensile strength of tendons

84. The approximate total percentage loss of prestressed in post - tensioned concrete beam is nearly in the range :

(1) 5 to 10 percent

- (2) 10 to 15 percent
- (3) 15 to 20 percent
- (4) 20 to 25 percent

85. For long span girders with curved cables approximate thickness of web for the following data (Vu = 450 kN, $ft = 1.7 \text{ N/mm}^2$, depth of girder 1300 mm) is :

- (1) 170 mm
- (2) 200 mm
- (3) 120 mm
- (4) 300 mm

Α			21	JO
86.	The	bursting stresses in prestressed cor	ncrete	members are developed at:
	(1)	Bond zone	(2)	Maximum shear zone
	(3)	Anchorage zone	(4)	Maximum bending moment zone
87.	Wha	at are the main resources required	for co	onstruction industry ?
	(1)	manpower and material	(2)	manpower and machinery
	(3)	machinery and material	(4)	all the above
88.	Whi	ich of the following control charts i	s suit	able to control the defects per unit ?
	(1)	\overline{X} and R chart (2) P chart		(3) np chart (4) C chart
89.	Wha	at does the direct cost of project inc	clude	?
	(1)	labour cost (2) material c	ost	(3) equipment cost (4) all the above
90.	Con	sider the following statements :		
	(a)	Critical path is longest path in ne	etwor	k
	(b)	Critical path is obtained by joinir state whether	ng the	event having zero or minimum slack. Nov
	Ans	wer options :		
	(1)	(a) True, (b) True	(2)	(a) False, (b) False
	(3)	(a) True, (b) False	(4)	(a) False, (b) True
91.	Whi	ich of the following is shown on sit	e lay	out for allocation of site space ?
	(1)	material storage	(2)	working areas

(4) all the above

SPACE FOR ROUGH WORK

(3) circulation areas

Α

92. Consider the following statements:

- (ii) PERT is activity oriented network diagram
- (b) CPM is event oriented network diagram

Now state whether:

Answer options:

- (1) (a) true, (b) true
- (2) (a) true, (b) false
- (3) (a) false, (b) false
- (4) (a) false, (b) true

93. What are the objectives of construction management :

- (1) High Quality Workmanship
- (2) Motivating people
- (3) Taking sound decisions
- (4) all of the above

94. Which of the following terms represents the settlement of disputes by unoffical persons chosen by the parties?

22

- (1) Force Mojure
- (2) Arbitration
- (3) Indemnification (4)

contract

95. What is the formula for free float?

- (1) F.F. = $T_L^j T_E^i t_{ij}$
- (2) F.F. = $T_{E}^{j} T_{E}^{i} t_{ij}$
- (3) F.F. = $T_E^j T_L^i t_{ij}$
- (4) F.F. = $T_L^j T_L^i t_{ij}$

96. What type of a drill is the Jack hammer?

- Abrasion
- (2) Churn
- (3) Shot
- (4) Percussion

97.	Consider the following statements:										
	(a)	Upto certain durat	ion direct cost	decre	eases, a	and there - af	ter it star	ts increasing			
	(b) Total cost of the project is a sum of direct costs and indirect costs.										
	Nov	v state whether :									
	(1)	(a) true, (b) true		(2)	(a) tı	rue, (b) false					
	(3)	(a) false, (b) false		(4)	(a) fa	alse, (b) true					
98.	The	purpose of job layou	ıt is to facilitat	te the	realisa	ation of :					
	(1) reduction in completion time										
	(2) high productivity from labour and machinery										
	(3) both (1) and (2)										
	(4)) none of the above									
99.	Wel	l points operate satis	factorily if the	y are	install	ed in :					
	(1)	silt (2	t) clay		(3)	sand	(4)	rock			
100.	Whi	ch of the following e	ffects is produ	ced d	ue to c	compaction by	pneuma	tic tired rolle	15.7		
	(1)	Static weight		(2)	Impa	act					
	(3)	Kneading action		(4)	Vibr	ation					
				000		<u> </u>		<u> </u>			

- o () o -

SPACE FOR ROUGH WORK

परीक्षेचे नांव: महाराष्ट्र अभियांत्रिकी (स्थापत्य) सेवा, गट - ब (मुख्य) परीक्षा - 2013

परीक्षेचा दिनांक: 31 ऑगस्ट व १ सप्टेंबर 2013 विषय: (प्रश्नपत्रिका क्र. २) स्थापत्य अभियांत्रिकी - पेपर - 1

महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य) परीक्षा - २०१३ या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबावत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY पेपर - I

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
1	3	3	4	1			
2	3	1	1	#			
3	2	1	1	3			
4	4	3	1	3			
5	1	3	3	4			
6	1	2	2	1			
7	#	1	3	3			
8	-1	4	2	1			
9	1	4	3	4			
10	2	3	1	2			
11	3	2	3	1			
12	4	4	4	1			
13	3	1	4	4			
14	4	#	1	2			
15	4	1	4	4			
16	1	4	#	3			
17	2	3,	2	2			
18	4	3	3	3			
19	2	3	1	1			
20	3	2	2	#			
21	3	1	3	4			
22	1	#	3	2			
23	1	1	2	1			
24	3	2	4	3			
25	3	1	2	1			

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
26	1	4	1	2	
27	2	2	3	3	
28	2	1	1	2	
29	1	3	#	1	
30	#	2	1	3	
31	4	4	3	4	
32	3	.4	1	4	
33	4	3	4	1	
34	3	4	3	3	
35	1	3	4	3	
36	1	1	1	3	
37	4	1	3	4	
38	4	4	1	4	
39	3	1	4	1	
40	4	3	3	4	
41	1	3	4	3	
42	3	4	4	4	
43	3	3	3	1	
44	4	4	4	3	
45	2	4	4	2	
46	3	3	4	3	
47	4	1	2	1	
48	4	1	1	4	
49	1	4	3	4	
50	3	4	1	2	

Date - 03 Oct, 2013

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

पेपर - I

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
51	1	2	4	3		
52	1	2	2	1		
53	2	3	2	4		
54	2	4	1	4		
55	1	4	3	1		
56	4	1	1	1		
57	4	2	4	2		
58	4	1	4	4		
59	2	2	2	1		
60	3	4	3	3		
61	4	1	4	2		
62	3	2	2	3		
63	2	2	4	4		
64	1	2	1	3		
65	2	3	3	2		
66	3	3	1	3		
67	1	3	3	1		
68	3	4	3	3		
69	3	3	3	2		
70	4	1	3	3		
71	3	3	2	2		
72	2	3	2	4		
73	3	3	3	3		
74	1	1	1	1		
75	3	1	3	3		

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
76	1	2	2	3	
77	1	1	3	1	
78	1	3	1:	3	
79	2	3	3	2	
80	2	1	1	3	
81	1	3	3	1	
82	3	2	1	1	
83	3	3	2	3	
84	3	1	3	2	
85	3	3	3	3	
86	3	3	1	1	
87	4	4	4	1	
88	4	2	2	1	
89	4	4	2	4	
90	1	3	4	3	
91	4	2	1	2	
92	3	1	4	3	
93	4	1	4	2	
94	2	4	4	3	
95	2	4	4	4	
96	4	3	3	3	
97	1	3	3	4	
98	3	4	1	4	
99	3	3	3	4	
100	3	4	3	4	

वेळ : 2 (दोन) तास

2013

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

पेपर-II

↑ केंद्राची संकेताक्षरे एकूण प्रश्न : 100

एकूण गुण : 200

शेवटचा अंक

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौंकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकंवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा**.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करावा तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरूक नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे**. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

۸		
. ^		

3

KO₂

1.	In the case of	which natural	feature do the	two contour	lines intersect	?

- (1) hill
- (2) valley
- (3) saddle
- (4) vertical clift

- - $\frac{\Sigma L + \Sigma D}{2N} \qquad (2) \quad \frac{\Sigma L}{N} + \frac{\Sigma D}{N} \qquad (3) \quad \sqrt{\Sigma L} + \Sigma D \qquad (4) \quad \sqrt{\Sigma L^2 + \Sigma D^2}$

True Bearing (1)

- True Meridian (2)
- Arbitrary meridian (3)
- (4) None of the above

- (1) 7
- (2) 8
- (3) 6
- (4)

(1)Resection

Radiation (2)

(3)Intersection (4)Either Radiation or Intersection

Which of the following statements are correct? 6.

- An echo sounder is also called as a fathometer.
- A self -registering gauge should be installed in open. (b)
- An echo sounder can be used in strong currents.

Answer options :

(a), (b) and (c) (1)

(2) (a) and (c)

(a) and (b) (3)

(b) and (c) (4)

SPACE FOR ROUGH WORK

Ove	rturning of a veh	icle oı	n a curve c	an be	avoid	ed by using	:		
(1)	Transition curv	e		(2)	Ver	tical curve			
(3)	Reverse curve			(4)	Con	npound curv	ve		
Leas	st count of a theo	dolite	is:						
(1)	1 minute	(2)	30 minute	es	(3)	1 degree	(4)	20 secon	ds
		_	a line is 54	.°30' a	and m	nagnetic dec	lination is	5°30' E, the	e tru
(1)	61°	(2)	59°		(3)	49°	(4)	60°	
			-	ence o	of elev	ations of st	ations fron	vertical a	ngle
(1)	Trigonometrical	level	ling		(2)	Geodetic s	urveying		
(3)	Field astronomy	7			(4)	Topograph	nic surveyii	ng	
are t	taken against the	horiz	ontal cross						
(1)	Substance meth	od			(2)	Tangential	system		
(3)	Fixed hair meth	od			(4)	None of th	ne above		
Arit	hmatic check in le	evellir	ng indicates	:					
(1)	Accuracy of fiel	d wo	rk	(2)	Corr	ectness of c	omputation	ns	
(3)	Instrumental er	ror		(4)	Erro	r in staff rea	ndings		
	(1) (3) Leas (1) If the bear (1) (3) The and (1) (3) Arith (1)	(1) Transition curv (3) Reverse curve Least count of a theory (1) 1 minute If the magnetic bearing of line will be arring of line will be and known distances (1) Trigonometrical (3) Field astronomy The method of tacheory are taken against the one single observation (1) Substance method (3) Fixed hair method Arithmatic check in least the control of the control o	(1) Transition curve (3) Reverse curve Least count of a theodolite (1) 1 minute (2) If the magnetic bearing of bearing of line will be: (1) 61° (2) The process of determining and known distances, is kingled astronomy The method of tacheometrical level (3) Field astronomy The method of tacheometrical are taken against the horizone single observation is kingled to be a single observation of the single observation observation of the single observation observation observation observation observation observation observation observation observation observatio	(1) Transition curve (3) Reverse curve Least count of a theodolite is: (1) 1 minute (2) 30 minute If the magnetic bearing of a line is 54 bearing of line will be: (1) 61° (2) 59° The process of determining the differ and known distances, is known as: (1) Trigonometrical levelling (3) Field astronomy The method of tacheometric surveying are taken against the horizontal cross one single observation is known as: (1) Substance method (3) Fixed hair method Arithmatic check in levelling indicates (1) Accuracy of field work	(1) Transition curve (2) (3) Reverse curve (4) Least count of a theodolite is: (1) 1 minute (2) 30 minutes If the magnetic bearing of a line is 54°30' a bearing of line will be: (1) 61° (2) 59° The process of determining the difference of and known distances, is known as: (1) Trigonometrical levelling (3) Field astronomy The method of tacheometric surveying in what are taken against the horizontal cross hair vone single observation is known as: (1) Substance method (3) Fixed hair method Arithmatic check in levelling indicates: (1) Accuracy of field work (2)	(1) Transition curve (2) Verical (3) Reverse curve (4) Consider (4) Consider (5) Reverse curve (4) Consider (6) Reverse curve (5) Reverse curve (6) Consider (6) Reverse curve (7) I minute (1) 30 minutes (1) I minute (2) 30 minutes (3) If the magnetic bearing of a line is 54°30′ and magnetic pearing of line will be: (1) 61° (2) 59° (3) The process of determining the difference of elevand known distances, is known as: (1) Trigonometrical levelling (2) (3) Field astronomy (4) The method of tacheometric surveying in which state taken against the horizontal cross hair with mone single observation is known as: (1) Substance method (2) (3) Fixed hair method (4)	(1) Transition curve (2) Vertical curve (3) Reverse curve (4) Compound curve (2) Tangential (3) Fixed hair method (2) Tangential (3) Fixed hair method (2) Tangential (3) Fixed hair method (2) Correctness of curve (4) Corpound curve (4) Compound curve (4) Compound curve (4) Compound curve (4) Compound curve (4) Tangential (5) Tangential (6) Correctness of and known distances, is known as: (1) Trigonometrical levelling (2) Geodetic (4) Topograph (4) Topograph (5) Correctness of the curve (6) Correctness of the curve (7) Correctness o	Least count of a theodolite is: (1) 1 minute (2) 30 minutes (3) 1 degree (4) If the magnetic bearing of a line is 54°30' and magnetic declination is bearing of line will be: (1) 61° (2) 59° (3) 49° (4) The process of determining the difference of elevations of stations from and known distances, is known as: (1) Trigonometrical levelling (2) Geodetic surveying (3) Field astronomy (4) Topographic surveying The method of tacheometric surveying in which stadia hairs are not used a are taken against the horizontal cross hair with measurement of vertical one single observation is known as: (1) Substance method (2) Tangential system (3) Fixed hair method (4) None of the above Arithmatic check in levelling indicates: (1) Accuracy of field work (2) Correctness of computation	(1) Transition curve (2) Vertical curve (3) Reverse curve (4) Compound curve Least count of a theodolite is: (1) 1 minute (2) 30 minutes (3) 1 degree (4) 20 second life the magnetic bearing of a line is 54°30′ and magnetic declination is 5°30′ E, the bearing of line will be: (1) 61° (2) 59° (3) 49° (4) 60° The process of determining the difference of elevations of stations from vertical and known distances, is known as: (1) Trigonometrical levelling (2) Geodetic surveying (3) Field astronomy (4) Topographic surveying The method of tacheometric surveying in which stadia hairs are not used and the real are taken against the horizontal cross hair with measurement of vertical angle twicone single observation is known as: (1) Substance method (2) Tangential system (3) Fixed hair method (4) None of the above Arithmatic check in levelling indicates: (1) Accuracy of field work (2) Correctness of computations

٠	

KO2

13.	In Global Positioning System (G.P.S.) there are more than 24 Nos. of G.P.S. Satellites moving in circular orbits around the earth with the inclination of :										
	(1)	65°	(2)	35°		(3)	45°	(4)	55°		
14.	For building project estimates which method is generally used in PWD ?										
	(1)	(1) Long wall and Short wall method					Centre line method				
	(3) Crossing method					(4)	None of the above				
15.	A building was constructed 20 years ago at ₹ 50,000. The estimated life of the building 90 years. What is the present value of the building using straight - line method? Use 10 scrap value										
	(1)	₹ 40,000	(2)	₹ 38,888		(3)	₹ 45,000	(4)	₹ 35,	000	
16.	The quantity of arch masonry work is calculated by the relation :										
	(1)	(1) Span of arch × breadth of wall × thickness of arch									
	(2)	(2) (Span of arch + 2 \times thickness of arch) \times breadth of wall									
	(3)	(3) (Span of arch + 2 \times breadth of wall) \times thickness of arch									
	(4)	(4) Mean length of arch × breadth of wall × thickness of arch									
17.	The work output of a mason for brick work in cement mortar for foundation work is roughly expected to be :										
	(1)	0.5 cu.m. per da	ay		(2)	1.25	cu.m per day	y			
	(3)	2.00 cu.m. per c	lay		(4)	5.00	cu.m. per da	y			

SPACE FOR ROUGH WORK

18.	Security	deposit	deducted	at 5%	from	contractors	bills i	s:	
-----	----------	---------	----------	-------	------	-------------	---------	----	--

- (1) refunded when the contractor completes the work.
- (2) refunded even before the completion of the work provided good progress has been established
- (3) retained till the expected life of structure and spent for maintenance
- (4) refunded when the defect liability period of six months or one monsoon whichever is later is over.

19. Which of the following documents will not be required for drafting the tender notice?

- (1) Nature of work and its location
- (2) Estimated cost of the work
- (3) Schedule A of the work
- (4) Mode of submitting tender

20. The rate of a particular item of work depends on :

- (a) Specifications of works and materials.
- (b) Quantities of materials and their rates.
- (c) Location of the site of work.
- (d) Profit and overhead expenses of contractor.

Answer options:

(1) (a) and (b)

(2) only (d)

(3) (a), (c) and (d)

(4) (a), (b), (c) and (d)

21. The brick work is not measured in m³ in case of :

- (1) One or more than one brick thick wall.
- (2) Half brick thick wall.
- (3) Brick work in arches.
- (4) Reinforced brick work.

Α				7					KO2		
22.	The method used for valuation of building is :										
	(1)	Rental method of valua	ation	(2)	Dep	reciation metho	od of va	luation			
	(3)	(3) Valuation based upon cost (4) Any of the abo					oove				
23.	Which of the following represents the requirements of valid contract :										
	(a)	(a) It must be in writing									
	(b)	(b) Can be enforced in court of law									
	(c)	(c) Parties should give the consent for agreement									
	(d)	d) Parties concerned must be competent									
	Answer options :										
	(1)	(a) and (b) of the above		(2)	(a) and (c) of the above						
	(3)	(c) and (d) of the above	(.	(4)	(a), (b), (c) and (d) of the above						
24.	Find the specific gravity of soil grains with the help of a pycnometer if, weight of solids = 100 g, weight of pycnometer + soil + water = 610 g, weight of pycnometer + water = 550 g.										
	(1)	2.40 (2) 2	2.50		(3)	2.60	(4)	2.70			
25.	with upto	active earth pressure for unit weight of 19.0 kN/ top of wall, is :	m ³ and ar	ngle o	f frict						
	(1)	330 kN/m		(2)	1326	kN/m					
	(3)	166.67 kN/m		(4)	650	kN/m					

SPACE FOR ROUGH WORK

26.	Cofferdam is a :										
	(1)	type of earthen	dam	for storage of wa	iter						
	(2)	(2) type of bridge foundation									
	(3)	temporary enclosure in a river to create dry working area during construction									
	(4)	permanent structure to store water during floods									
27.	Compactive energy used for modified proctor test is how many times the compactive energy used in standard proctor test :										
	(1)	2.5'	(2)	3.5′	(3)	4.5'	(4)	5.5′			
28.		ne method of slice ectangular with a Straight line	base	in the shape of :	ne stab	oility of slopes ; ea		ce is assumed to Parabolic arc			
29.	The critical height of vertical excavation that can be made without any lateral support for a cohesive soil having unit weight of 19.2 kN/m ³ , unit cohesion as 12 kN/m ² and $\phi = 10^{\circ}$, is :										
	(1)	1.49 m	(2)	2.98 m	(3)	4.47 m	(4)	5.96 m			
30.	A footing of 4m \times 2m in plan, transmit a pressure of 200 kN/m ² on a cohesive soil having $F = 6 \times 10^4$ kN/m ² and $\mu = 0.5$. The immediate settlement of the footing at the centre assuming rigid footing and $I_f = 1.2$, is :										
	(1)	5 mm	(2)	6 mm	(3)	12 mm	(4)	10 mm			

A					9	9 KG					
31.	During ocdometer tests on soils, the permeability of a saturated clay may be obtained from :										
	(a)	Voids ratio with t	the c	hange in ap	plied	load.					
	(b)	Voids ratio with t	the c	hange in lo	garith	m of	the applied load	l.			
	(c)	c) Unit weight of water and degree of consolidation.									
	(d)	(d) Unit weight of water and coefficient of consolidation.									
	Whi	Which of the following options is correct:									
	(1) Both (a) and (d)				(2)	Both (a) and (c)					
	(3)	Both (b) and (c)			(4)	Both	(a) and (b)				
32.	. If saturated clay mass is sheared with normal stress of 220 kPa and pure water processes 120 kPa, the result gives $C'=12$ kPa and $\varphi'=45^\circ$. The shear strength in terms of stress is :										
	(1)	139 kPa	(2)	69.7 kPa		(3)	81.28 kPa	(4)	112 kPa		
33.	The water content corresponding to maximum density is :										
	(1)	(1) Optimum water content			(2)	Maximum water content					
	(3)	Least water conte	ent		(4)	Zero	water content	•			
34.	Coefficient of discharge for an orifice is of contraction.						of coefficient of	velocity	and coefficient		
	(1)	an addition ((2)	a differenc	e	(3)	a product	(4)	a ratio		
35.	Reciprocating pump belongs to which of the following types ?										
	(1)	Rotary pump			(2)	Prop	eller pump				
	(3)	Mixed flow pump	,		(4)	Disp	lacement pump				
SPA	CE F	OR ROUGH WOR	KK								

A

and the second second second second second

36.		For incompressible fluids in which of the following cases hydrostatic pressure remains constant?									
	(1)	along horizontal plan	ne								
	(2)	(2) along vertical plane									
	(3)	along both horizontal	and vertical pla	nes							
	(4)	along inclined plane	making an angle	of 45° with the horiz	ontal						
37.		which of the following a other ?	cases streamline	streak line and path	lline will coincide with						
	(1)	Steady flow	(2)	Unsteady flow							
	(3)	Laminar flow	(4)	Turbulent flow							
38.	For	steady uniform flow in	prismatic channe	el, which of the follow	ing statements is true ?						
	(1)	Slope of energy line is	more than slope	of channel bed							
	(2)	Slope of energy line is	same as slope o	channel bed							
	(3)	Slope of energy line is	more than slope	of free surface							
	(4)	Slope of energy line i surface.	s more than slop	e of channel bed but	less than slope of free						
39.		ch of the following term and hydraulic grade li									
	(1)	Piezometric head	(2)	Velocity head							
	(3)	Elevation head	(4)	Total head							
SPA	CE F	OR ROUGH WORK									

- 40. Which of the following is the cause for separation of boundary layer?
 - (1) Positive pressure gradient
 - (2) Negative pressure gradient
 - (3) Boundary layer thickness reducing to zero
 - (4) Laminar flow changing to turbulent flow
- 41. Bernoullis equation in it's original form is applicable to which of the following types of flow?
 - (1) flow along a streamline
- (2) flow of an ideal fluid

(3) steady flow

- (4) all the above
- 42. Which of the following is correct dimension for dynamic viscosity?
 - (1) MLT⁻¹
- (2) ML^2T^{-1}
- (3) $ML^{-1}T^{-1}$
- (4) $ML^{-1}T^{-2}$
- 43. Newtonian fluids satisfy which of the following equations ?
 - (1) $\tau = \mu \left(\frac{du}{dy}\right)^2$

(2) $\tau \approx \tau_c + \mu \left(\frac{du}{dy}\right)$

(3) $\tau = \mu \cdot \frac{du}{dy}$

- (4) $\tau = \tau_c + \mu \left(\frac{du}{dy}\right)^2$
- 44. If the maximum depth of 50 years 10 h rainfall depth at Nanded is 150 mm, the 50 years 4 h maximum depth at the same place is :
 - (1) < 150 mm

(2) > 150 mm

(3) = 150 mm

(4) Inadequate data

SPACE FOR ROUGH WORK

45.	the		ity as used			sis of the ration ration twice l			
	(1)	Q_p	(2)	2Q _P	(3)	$Q_P/2$	(4)	$(Q_P)^2$	
46.	A u	nit hydrogi	aph has						
	(1)	One unit	of peak disc	harge					
	(2)	One unit	of rainfall d	uration					
	(3)	One unit	of direct rui	noff					
	(4)	One unit	of the time l	base of dire	ect runoff				
47.	The	Muskingun	n method of	flood rou	ting is a :				
	(1)	hydrologi	c channel ro	outing met	hod				
	(2)	form of re	servoir rout	ing metho	d				
	(3)	hydraulic	routing me	ethod					
	(4)	complete	numerical s	olution of	St. Venant e	quations			
48.	Surc	harge stora	ge in a rese	voir is the	volume of s	torage betwe	en :		
	(1)	minimum	pool level a	nd normal	pool level				
	(2)	normal an	d maximun	n pool leve	·l				
	(3)	dead stora	ige level and	d maximur	n storage lev	el			
	(4)	minimum	and averag	e pool leve	el				
	OF E	on nove	II WORK						 ,

49.	In routing a flood through a reach, the point of intersection of inflow and outflow
	hydrographs coincides with the peak of out flow hydrograph:

- (1) in all the cases of flood routing
- (2) when the inflow is into a reservoir with an uncontrolled outlet
- (3) in channel routing only
- (4) in all cases of reservoir routing
- 50. The discharge per unit drawdown at a well is known as:
 - (1) Specific yield
- (2) Specific storage

(3) Safe yield

- (4) None of these
- 51. If S_y = specific yield and S_r = specific retention, then :
 - (1) $S_y + S_r = 0.50$

(2) $S_y + S_r = Porosity$

(3) $S_y + S_r = 1.0$

- (4) $S_y + S_r = Permeability$
- 52. An acquifer confined at the bottom but not at the top is called:
 - (1) Semiconfined acquifer
- (2) Unconfined acquifer
- (3) Confined acquifer
- (4) Perched acquifer
- 53. The use of the unit hydrograph for estimating floods is limited to catchments of size less than:
 - (1) 5000 km^2
- (2) 500 km²
- (3) 10⁴ km²
- (4) no upper limit

SPACE FOR ROUGH WORK

54.		This Reynolds number is obtained by :									
	(1)	(discharge	velocity ×	maximum g	grain size)	/μ					
	(2)	(actual velocity \times average grain size)/ ν									
	(3)	(discharge velocity × average grain size)/v									
	(4)	(discharge	velocity ×	pore size)/ı	,						
55.	An isochrone is a line on the basin map :										
	(1)	Joining raingauge stations with equal rainfall duration									
	(2)	Joining poi	nts having	g equal stand	ard time						
	(3)	Connecting points having equal time of travel of the surface runoff to the catchment outlet									
	(4)	That conne	cts points	of equal rain	fall depth	in a giver	time ii	ıterval			
56.	Acco	ording to Dr.	Khosla's t	heory, the ex	it gradien	t in the ab	sence o	f a downstream cuto			
	(1)	zero	(2)	infinity	(3)	unity	(4)	very large			
57.	Uplift pressure on the dam :										
	(1)	virtually in	creases the	downward	weight of	the body	of the c	lam			
	(2)	increases th	ne stability	of dam							
	(3)	virtually de	creases th	e downward	weight of	the body	of the	dam			
	(4)	has no effe	ct on the s	tability of da	m						
58.	Spill	way is a stru	icture cons	structed at a	dam site f	or:					
	(1)	effectively	disposing	of dead stora	ge for drii	nking wate	er				
	(2)	effectively	disposing	of surplus wa	iter on do	wnstream	side				
	(3)	effectively	disposing	of water in ca	anal for ir	rigation					
	(4)	storage of s	urplus wa	ter during flo	oods						
SPA	CE FO	OR ROUGH	WORK								

- 59. What does an earthquake acceleration of 0.15 g acting vertically downward in a gravity dam cause ?
 - (1) an increase in the weight of dam by 15%
 - (2) reduction in unit weight of concrete only by 15%
 - (3) decrease in unit weight of concrete and water by 15%
 - (4) increase in uplift pressure by 15%
- 60. Elementary profile of a gravity dam will be right-angled triangle having zero width at the water level and a base width (B) at bottom:
 - (1) When subjected to water pressure on upstream side only
 - (2) When subjected to water pressure and silt pressure
 - (3) When subjected to silt pressure on upstream side only
 - (4) When subjected to Ice pressure on upstream side only
- 61. The meander ratio is the ratio of:
 - (1) the length of the river channel to the axial length of the river
 - (2) the axial length of the river to the length of the river channel
 - (3) the meander length to the meander belt
 - (4) the meander belt to the meander length
- 62. The following data is available for a cross drainage project:

 Parameter
 Canal
 Drainage

 FSL(m)
 110
 109

 Bedlevel (m)
 105
 107

 Discharge (m³/s)
 90
 15

The most appropriate cross drainage work for this situation is:

- (1) syphon aqueduct
- (2) syphon

(3) super passage

(4) aqueduct

SPACE FOR ROUGH WORK

63.	At the base of a gravity dam section, the vertical stress	at the toe is 4 MPa. The slope of
	downstream face of dam is 0.707 horizontal: 1 vertical.	If there is no tail water, the major
	principal stress at the toe is :	37 Dt - 100

- (1)4 MPa
- 5 MPa (2)
- 6 MPa
- 8 MPa

In a solid-roller bucket type energy dissipator, the energy dissipation is :

- due to formation of a hydraulic jump. (1)
- (2)due to interaction of free jet with air and due to impact on downstream channel bed.
- due to interaction of two complementary rollers. (3)
- due to lateral spreading of the jet and partly due to interaction of two rollers. (4)

65. Identify the correct statements:

The ski-jump energy dissipator is used usually when:

- the tail water level is too low for hydraulic jump to form (a)
- the bed of the stream is of sound rock (b)
- the erosion from the jet is not a problem for the safety of the structure (c)
- there is considerable air entrainment of the flow by the time it reaches the bucket

Answer options:

(a), (c) and (d) (1)

(b), (c) and (d) (2)

(3)(a), (b) and (d) (4)(a), (b) and (c)

The perimeter of a regime channel having width B and depth D is: 66.

- (1) $B + \sqrt{2} D$
- (2) $B + 2\sqrt{2} D$ (3) $B + \sqrt{5} D$
- (4) $B + 2\sqrt{5} D$

A				17	7			KO2
67.	Gro	ynes are construc	ted to):				
	(1)	control the river	floo	d				
	(2)	protect the bank	fror	n which they ar	e exter	nded		
	(3)	permit the cons	tructi	on in flowing ri	ver			
	(4)	ensure effective	dispe	osal of sediment	load			
68.		a saddle -siphon ace :	spillv	vay, an air ven	is pro	ovided at the lev	vel of t	he full reservoir
	(1)	to break the sip	honic	action at that le	evel.			
	(2)	to initiate the s	ipho	nic action at tha	t level	Ĉ		
	(3)	to prevent cavit	ation					
	(4)	to maintain ven	tilatio	on inside the sip	hon.			
69.	PIE	V theory is related	to:					
	(1)	Accident study		(2)	Pav	ement design		
	(3)	Sight distance s	udy	(4)	Ori	gin and Destinat	tion stu	dy
70.	Spec	cific gravity of pur	e bit	umen is in the ra	ange o	f:		
	(1)	1.10 to 1.25	(2)	1.25 to 1.40	(3)	0.97 to 1.02	(4)	Less than 1.0
71.	Supe	er elevation to be	provi	ded in horizont	al curv	es of radius R in	hill roa	nds is given by :
	(1)	V ² /127R	(2)	V ² /17.5 R	(3)	V ² /225R	(4)	$(V + 8)^2 / 127R$

SPACE FOR ROUGH WORK

72.	Org	Organisations/ Institutions involved with Road Development in India are :								
	(1)	NHAI, IRC,	BRO		(2)	NH	AI, IRC, BO	I		
	(3)	IRC, HRB, I	BCI		(4)	NH	AI, HRB, B	CI		
73.		has fixed the	maximur	n limit of s	uper e	levatio	on for mixe	d trafí	fic in p	plain and rolling
	(1)	10%	(2)	7%		(3)	5%		(4)	4%
74.	In h	ot climates, b	tumen of	what pene	etration	n grad	e is preferr	ed ?		
	(1)	80/100			(2)	60/	70			
	(3)	30/40			(4)	Non	e of the abo	ove		
75.	Pavements of major roads should be designed for atleast a life period of :									
	(1)	5 years	(2)	10 years		(3)	20 years		(4)	30 years
76.		exible pavements								f traffic volume,
	(1)	More	(2)	Less		(3)	Same	(4)	Non	e of the above
77.	The	centrifugal fo	rce is acti	ng on a ve	hicle n	egotia	ting a :			
	(1)	Railway trac	k crossin	g	(2)	Rive	r crossing			
	(3)	Vertical curv	⁄e		(4)	Hori	zontal curv	re		
SPA	CF F	OR ROUGH	WORK							

	٠	
- 4	A	
-	ч	L
4		

19

KO2

78.	Orig	gin and Destination	on stu	dies are carried o	ut for	·:				
	(1)	Planning of roa	d net	work for vehicula	ar traf	fic				
	(2)	Accident studie	es.							
	(3)	Pavement Design								
	(4)	Geometric Desi	gn							
79.	The	minimum stoppin	ng sigh	nt distance on sing	le lane	roads with two -	way tı	raffic movements		
	(1)	2 × SSD	(2)	0.5 × SSD	(3)	4 × SSD	(4)	equal to SSD		
80.		a rightangled roa	nd int	ersection with tw	70 -W	ay traffic, the tot	al nu	mber of conflict		
	(1)	24	(2)	11	(3)	6	(4)	4		
81.	App	roach on either si	ide of	a bridge will hav	e a m	inimum straight l	ength	of:		
	(1)	5 mt	(2)	15 mt	(3)	50 mt	(4)	150 mt		
82.	The	selection of site fo	or roa	d bridges depend	s on :					
	(1)	Nature of river	banks	and appropriate	arche	es				
	(2)	Width and dept	h of r	iver at site to be b	ridge	d				
	(3)	Availability of g	good a	nd safe foundation	on for	bridge				
	(4)	All of the above								
83.	In cl	ass 70 - R loading	g, the	minimum spacing	g betw	een vehicles is :				
	(1)	30 m	(2)	40 m	(3)	60 m	(4)	70 m		
SPA	CE F	OR ROUGH WO	RK							

84.	acce	A temporary enclosure built to exclude water from the working area and to provide free access to the area within, during the construction of a foundation or other structures that may be undertaken below water level is known as:									
	(1)	Shell	(2)	Cofferdam							
	(3)	Caissions	(4)	Any of the above							
85.	Whe	en is the span of the bridge econo	omic ?								
	(1)	(1) When the cost of supporting system of one span is equal to cost of one pier									
	(2)) When the cost of supporting system of one span is equal to cost of one abutment									
	(3)	(3) When the cost of one pier is equal to half the cost of abutment									
	(4)	(4) When the cost of supporting system of one span is equal to twice the cost of pier									
86.	The stream at the ideal bridge site should be :										
	(1)	Well defined and as deep as possible									
	(2)	2) Well defined and as wide as possible									
	(3)	(3) Well defined and as narrow as possible									
	(4)) Deep and as wide as possible									
87.	The	small submersible bridge having	no ope	nings is known as :							
	(1)	Cause way	(2)	Dead end bridge							
	(3)	Irish bridge	(4)	Either (1) or (3)							
88.	Susp	pension bridges are :									
	(1)	Movable bridges	(2)	Suitable for long spans							
	(3)	Suitable for short spans	(4)	Used over navigable channels							

SPACE FOR ROUGH WORK

Neither storm sewer nor sanitary sewer

SPACE FOR ROUGH WORK

(3)

(4)

(A) is true but (R) is false.

(A) is false but (R) is true.

Α				23				KO2		
98.	Wha	at is the treatment	for r	emoval of color	due to	colloidal organi	ic matte	r:		
	(1)	Aeration								
	(2)	Primary sedimentation								
	(3)	Co-agulation at	low p	oH with alum sa	lts					
	(4)	All the above								
99.	In L	ondon Smog episo	ode, v	which was the re	spons	ible pollutant ?				
	(1)	Carbon monoxid	de	(2)	Oxi	des of Nitrogen				
	(3)	Sulphur dioxide		(4)	Ozo	one				
100.		ich of the followi	ing s	tatements are n	ot co	rrect in relation	to wa	ter distribution		
	(a)	Tree system requ	ires	more number of	valve	s and length of p	oipe.			
	(b)	Reticulation syst	em h	as multiple flow	paths	and pressures a	re equa	ilised.		
	(c)	Hardy-Cross me	thod	is used to analy	ze bot	h tree and reticu	ılation s	ystems.		
	Ans	wer options :								
	(1)	(a), (b) and (c)	(2)	(a) and (b)	(3)	(b) and (c)	(4)	(a) and (c)		

- o O o -

SPACE FOR ROUGH WORK

परीक्षेचा दिनांक: 31 ऑगस्ट व १ सप्टेंबर 2013 विषय: (प्रश्नपत्रिका क्र. ३) स्थापत्य अभियांत्रिकी - पेपर - II

महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य) परीक्षा - २०१३ या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY पेपर - II

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
1	4	2	4	2			
2	4	4	4	1			
3	2	4	4	4			
4	1	4	1	1			
5	4	4	2	2			
6	2	2	4	4			
7	1	2	4	1			
8	4	1	1	4			
9	4	4	2	4			
10	1	2	4	4			
11	2	1	2	2			
12	2	4	1	4			
13	4	1	2	2			
14	1	2	3	2			
15	1	4	2	1			
16	4	4	1	4			
17	2	1	4	1			
18	4	3	4	4			
19	3	4	4	4			
20	4	4	2	3			
21	2	2	4	4			
22	4	1	4	4			
23	4	4	1	2			
24	2	3	2	2			
25	3	4	3	3			

	T					
प्रश्न क्रमांक	संच \Lambda	उत् संच B	तरे संच C	संच D		
		2	2	2		
26	3					
27	3	3	1	3		
28	1	1	2	2		
29	2	1	1	1		
30	2	3	4	3		
31	4	2	3	4		
32	4	2	3	4		
33	1	4	4	1		
34	3	4	2	1		
35	4	2	2	3		
36	1	1	4	3		
37	1	3	3	2		
38	2	4	4	1		
39	2	1	1	1		
40	1	1	3	4		
41	4	3	1	4		
42	3	2	1	3		
43	3	3	3	2		
44	1	2	1	1		
45	1	1	3	4		
46	3	2	1	2		
47	1	2	3	2		
48	2	4	1	1		
49	2	3	2	2		
50	4	1	3	3		

Date - 03 Oct, 2013

पेपर - II

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
51	2	3	2	1			
52	2	1	2	2			
53	1	2	2	3			
54	3	3	4	3			
55	3	1	1	1			
56	2	4	2	1			
57	3	3	2	1			
58	2	2	3	2			
59	3	3	1	3			
60	1	4	2	4			
61	4	3	3	3			
62	1	2	1	1			
63	3	1	3	3			
64	3	3	3	4			
65	4	1	1	2			
66	3	3	3	2			
67	2	1	4	3			
68	1	2	4	3			
69	3	3	4	1			
70	3	4	3	2			
71	3	1	2	3			
72	1	1	2	2			
73	2	2	3	1			
74	3	3	3	1			
75	2	1	1	4			

1									
प्रश्न		उत्तरे							
क्रमांक	संच A	संच B	संच C	संच D					
76	1	3	3	1					
77	4	2	1	1					
78	1	3	1	3					
79	1	1	1	3					
80	1	1	1	3					
81	2	4	4	2					
82	4	3	3	1					
83	1	2	2	2					
84	2	2	2	4					
85	1	1	1	4					
86	3	1	4	4					
87	4	4	1	2					
88	2	3	3	1					
89	4	2	2	3					
90	3	4	4	3					
91	4	4	4	4					
92	1	3	1	4					
93	1	4	3	3					
94	4	3	1	4					
95	1	3	3	1					
96	3	1	4	3					
97	3	4	3	3					
98	3	1	1	3					
99	3	3	4	1					
100	4	1	3	1					

वेळ : 2 (दोन) तास

2016

CODE: BO7

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका-II

एकूण प्रश्न : 100

स्थापित्य अभियांत्रिकी पेपर-1

एकूण गुण : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

परीक्षा-क्रमांक

परीक्षा-क्रमांक

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- ↑ रोवटचा अंक केंद्राची संकेताक्षरे
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमूद करावा.**
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपित्रकेवरील सूचनेप्रमाणे तुमच्या उत्तरपित्रकेवर नमूद करावा. अशा प्रकारे उत्तरपित्रकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्प्रेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. धाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुर्रविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

1. Which of the following is not a test for measuring workability of concrete?										
•	(1)	Slump Test	(2)	Flow Test						
	(3)	Std. Consistency Test	(4)	Kelly Ball Test						
2.	The	stone whose crushing strength is r	naxim	num, is :						
	(1)	granite (2) chalk		(3) slate (4) marble						
3.		per the Building Byelaws, how muc ne front ?	h sho	uld be the marginal distance that is to be le						
	(1)	At least 3 m	(2)	At least 5 m						
	(3)	More than 5 m	(4)	More than 10 m						
4.	Generally at what rate should slip form be lifted ?									
	(1)	1 m per hour	(2)	5 - 10 cm per hour						
	(3)	20 - 30 cm per hour	(4)	50 - 60 cm per hour						
5.	What is a Mullion in a window shutter?									
	(1) Vertical member running through shutter of window.									
	(2) Horizontal member of shutter.									
	(3)	Inclined battening.								
	(4)	None of the above								
6.	How much is the covering capacity of cement paint ?									
	(1)	About 18 m ² /kg per coat	(2)	About 20 m ² /kg per coat						
	(3)	About 12 m ² /kg per coat	(4)	About 4 m ² /kg per coat						
7.	As p	per IS specifications, the heat of hy	ydrati	on of low-heat portland cement for 28 day						
	(1)	Not more than 100 calories/gm	(2)	Not more than 50 calories/gm						
	(3)	Not more than 75 calories/gm	(4)	Not more than 150 calories/gm						

8.

(1)

(3)

Aspect

Roominess

(2)

(4)

Floor Area Ratio

Prospect

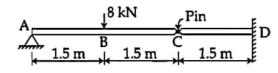
Which of the following is not a principle of _____ planning?

			207.7							
9.	To what, is Ease related in concrete technology?									
	(1)	Geology of fresh concrete	(2)	Rheology of fresh concrete						
	(3)	Mineralogy of fresh concrete	(4)	Ecology of fresh concrete						
10.	Wha	at does not fit into the classification	n of p	ile based on function ?						
	(1)	Bearing pile	(2)	Friction pile						
	(3)	Compaction pile	(4)	Steel pile						
11.	Acceptable noise level in dB for auditorium is :									
	(1)	25 to 30 (2) 40 to 45		(3) 35 to 40 (4) 45 to 55						
12.	Cavity or hollow space in a wall is provided for :									
	(a)	Prevention of dampness	(b)	Heat insulation						
	(c)	Sound insulation	(d)	Efflorescence						
	Ans	wer options :								
	(1)	(a) and (b)	(2)	(a) and (c)						
	(3)	(a), (b) and (d)	(4)	(a), (b), (c) and (d)						

13. If a solid shaft is subjected to a torque (T) at its end such that maximum shear stress does

(2) $\left(\frac{16 \text{ T}}{\pi f_{\rm s}}\right)^{\frac{1}{2}}$ (3) $\left(\frac{16 \text{ T}}{\pi f_{\rm s}}\right)^{\frac{1}{3}}$

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK


not exceed $f_{\mathrm{s'}}$ the diameter of the shaft will be :

(4) None of these

- Maximum deflection of a cantilever due to pure moment 'M' at its free end, is : 14.
 - (1)

- If the load on a column is increased to a value that on its removal the deflection remains, the load is known as:
 - (1)Critical load
- (2) Crippling load (3) Buckling load
- All of these
- Magnitude of shear stress induced in a shaft due to applied torque varies from : 16.
 - Maximum at centre to zero at circumference
 - (2) Maximum at centre to minimum (Not Zero) at the circumference
 - Zero at centre to maximum at circumference (3)
 - (4)Minimum (Not Zero) at centre to maximum at circumference
- The ratio of the flexural strengths of two beams of square cross section, the first beam 17. being placed with its top and bottom sides horizontally and second beam being placed with one diagonal horizontally, is:
 - (1)

- In an experiment it is found that the bulk modulus of a material is equal to its shear modulus then the Poisson's ratio is:
 - (1)0.125
- 0.250 (2)
- 0.375 (3)
- 0.500 (4)
- The beam AC simply supported at A and at C is pinned to a cantilever beam CD as shown in figure. Both beams have identical flexural rigidities EI. The vertical load of 8 kN acts at point B. The deflection of point B is:

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

20.	What is true if the areas of cross-section of square and circular beams, subjected to equal
	bending moments are the same ?

- (1) circular beam is more economical
- (2) square beam is more economical
- (3) both the beams are equally strong
- (4) both the beams are equally economical

21.	Two rods of different materials having coefficient of linear expansion α_1 , α_2 and Young's
	moduli E1, E2 respectively are fixed between to massive walls. The rods are heated such
	that they undergo the same increase in temperature. There is no bending of the rods.
	If $\alpha_1 : \alpha_2 = 2 : 3$, the thermal stresses are equal, what is the ratio of E_1 to E_2 ?

- (1) 2:3
- (2) 1:1
- (3) 3:2
- (4) 4:5

22. The phenomenon of slow growth of strain under a steady stress is called:

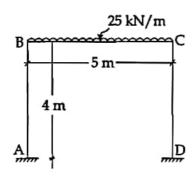
(1) yielding

(2) creeping

(3) breaking

(4) none of the above

23. A rectangular timber beam (b×d) is cut out of a cylindrical log of diameter 'D'. The width (b) of the strongest timber beam will be:


- (1) √3 D
- (2) $\frac{D}{\sqrt{3}}$
- (3) √2 D
- $(4) \quad \frac{D}{\sqrt{2}}$

24. A rigid frame detailed to provide good ductility and support for both lateral and gravity loads by flexural action is called:

- (1) Ordinary moment resisting frame
- (2) Intermediate moment resisting frame
- (3) Special moment resisting frame
- (4) All of the above

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

25. A fixed base symmetrical frame is shown in the figure write slope deflection equation for moment at B for member AB:

(1) $M_{BA} = 0.5 \text{ EI.}\theta_B$

(2) $M_{BA} = EI.\theta_B$

 $(3) M_{BA} = 0.5 EI.\theta_{A}$

- (4) $M_{BA} = EI.\theta_A$
- 26. A propped cantilever is subjected to a concentrated load of 16 kN at the centre of the span. The length of beam is 4 m. The flexural rigidity EI = 4 × 10² kNm². The reactions at the fixed end and simply supported end are:
 - (1) 9.87 kN at fixed end and 6.13 kN at simply supported end
 - (2) 8 kN each at fixed end and simply supported end
 - (3) 11 kN at fixed end and 5 kN at simply supported end
 - (4) 16 kN at fixed end and zero kN at simply supported end
- 27. Fill in the blanks:

The primary unknowns in slope deflection methods are _____ and obtained by solving _____ equations.

- (1) rotational and translational displacements, joint force equilibrium
- (2) moment and forces, compatibility
- (3) stiffness and flexibility, differential
- (4) none of the above
- 28. A rigid jointed frame with three bays and two stories has two fixed column supports and two hinged. The degree of static indeterminacy of structure is:
 - (1) 25
- (2) 27
- (3) 18
- (4) 16

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

- 29. Three prismatic members AB, BC and BD meet at a joint for a rigid frame to be analysed using moment distribution method. The distribution factors for members AB and BC are 0.5 and 0.3 respectively. The distribution factor for member BD shall be:
 - (1) 0.2
- (2)1.67
- 0.6
- 0.15
- A propped cantilever of span 'L' fixed at A and simply supported at B is subjected to 30. concentrated load 'W' at centre, reaction at B:
 - (1) $\frac{3}{16}$ W
- (3) $\frac{5}{16}$ W
- (4) $\frac{7}{16}$ W
- 31. A rigid frame ABCD with vertical members AB and CD is pinned at A and roler supported at 'D'. Horizontal member BC is loaded with vertical point load of 90 kN at the centre of

BC. AB=BC=CD=3 m. If support A rotates by $\frac{1}{300}$ rad. and also sinks downward by

- 30 mm. The reactions at A and D:
- shall be affected due to rotation and sinking (1)
- shall not be affected due to rotation and sinking (2)
- reaction at A shall change but reaction at B shall not change due to rotation and sinking
- none of the above
- A moment 'K' required to rotate near end of a prismatic beam through a unit angle without 32. translation, the far end being freely supported is given by:
 - (1) $K = \frac{3 \text{ EI}}{L}$ (2) $K = \frac{4 \text{ EI}}{L}$ (3) $K = \frac{\text{EI}}{L}$ (4) $K = \frac{L}{\text{EI}}$

- A truss deflection is to be calculated for a point 'X' using unit load method. Find the contribution to deflection by a truss member having details as below

Lenght = 8.00 m

Area = 11.25×10^{-3} m²

Internal force resisted by member under actual loading condition = 450 kN (compression) modulus of elasticity = $200 \times 10^6 \text{ kN/m}^2$

Internal force after unit load application = 0.0 kN

- (1) -0.5 mm
- (2) $+0.5 \,\mathrm{mm}$
- (3) -1.6 mm
- (4) Zero

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

34. A continuous beam ABCD has end A as fixed and support B and C are simple supports while end D is free. The fixed end moments for beam AB are FEM_{AB} = -19.2 kNm and FEM_{BA} = 28.8 kNm. The moment equation for slope deflection method for beam AB can be written as:

(1)
$$M_{ab} = \frac{2 EI}{L} (2\theta_A + \theta_B) + 28.8$$

$$M_{ba} = \frac{2 EI}{I} (\theta_A + 2\theta_B) - 19.2$$

(2)
$$M_{ab} = \frac{2 EI}{L} (\theta_A) - 19.2$$

$$M_{ba} = \frac{4 \text{ EI}}{L} (\theta_{A}) + 28.8$$

(3)
$$M_{ab} = \frac{4 \text{ EI}}{L} (\theta_A) - 19.2$$

$$M_{ba} = \frac{2 \text{ EI}}{L} (\theta_{A}) + 28.8$$

(4)
$$M_{ab} = \frac{2 EI}{L} (\theta_B) - 19.2$$

$$M_{ba} = \frac{4 \text{ EI}}{L} (\theta_{B}) + 28.8$$

- 35. The degree of static indeterminacy of pin-jointed space frame is given by :
 - (1) m+r-2j
- (2) m+r-3j
- $(3) \quad 3m+r-3j$
- (4) m+r+3j

Where 'm' = the number of unknown member forces

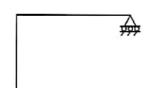
'r' = unknown reaction components and

'j' = the number of joints.

- 36. If load system applied on the arch is entirely vertical the horizontal thrust at each of the supports must be:
 - (1) Same

(2) Different

(3) Zero


(4) None of the above

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

37. If k_i is the stiffness of i^{th} member at a joint, the distribution factor for the member is :

- (1) k_i
- (2) $\frac{k_i}{\sum k_i}$
- (3) Σk_i
- (4) $(\Sigma k_i k_i)$

38. The Kinematic Indeterminacy of a frame as shown is:

- (1) KI = 1
- (2) KI = 2
- (3) KI = 3
- (4) KI = 5

39. A rigid frame ABCD has AB member as overhang, with end 'A' being free. Supports C and D are fixed. DB is vertical member and BC is horizontal member. DB=BC=5 m. If the moment equations are given by:

$$M_{DB} = 0.4 \text{ EI } \theta_B$$

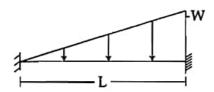
$$M_{BD} = 0.8 \text{ EI } \theta_B$$

$$M_{BA} = 54$$

$$M_{BC} = -135 + 1.6 \text{ EI } \theta_{B}$$

 $M_{CB} = 135 + 1.6 EI \theta_B$ then

 θ_B rotation at B is given by :

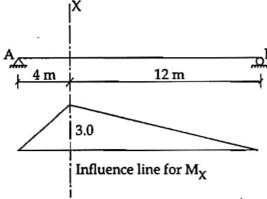

(1) $\frac{-112.5}{EI}$

(2) $\frac{33.75}{EI}$

(3) Zero

(4) None of the above

40. The fixed end moment for the beam loaded is:



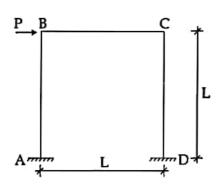
- (1) $-\frac{WL^2}{10}$ and $+\frac{WL^2}{20}$
- (2) $-\frac{WL^2}{30}$ and $+\frac{WL^2}{20}$
- (3) $+\frac{WL^2}{20}$ and $-\frac{WL^2}{30}$
- (4) $-\frac{WL^2}{15}$ and $-\frac{WL^2}{15}$

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

- 41. If unit load moves from left to right on S.S. beam the nature of ILD for reaction is :
 - (1) Parabolic

- (2) Hyperbolic
- (3) Horizontal Straight Line
- (4) Inclined Straight Line
- 42. A portal frame consisting of three members is pinned at both the supports. All the members have same value of El. The frame has height of 3 m and width of 4 m. It is subjected to horizontal load at top beam level of P=10 kN in the plane of frame. Calculate maximum moment in the frame using approximate method or otherwise:
 - (1) 15 kNm
- (2) 10 kNm
- (3) 30 kNm
- (4) 7.5 kNm
- 43. The influence line for bending moment at section X(M_X) at a distance of 4 m from the left support of a simply supported girder AB is shown in figure below. A uniformly distributed load of intensity 2 t/m longer than the span crosses the girder from left to right.

The max bending moment at section X is equal to:


- (1) 12 tm
- (2) 24 tm
- (3) 48 tm
- (4) 96 tm
- 44. A continuous beam has AB as one of the spans. It is subjected to fixed end moments at end A and B as FEM_A and FEM_B respectively under given loads. It has length 'L' and flexural rigidity EI. It rotates at end A and B by θ_A and θ_B respectively. The member axis

rotates through clockwise angle $R=\frac{\Delta}{L}\,.$ The moment at end A is given by :

- (1) $M_A = FEM_B + \frac{4EI}{L} (2\theta_A + \theta_B 3R)$
- (2) $M_A = FEM_A + \frac{2 EI}{I} (2\theta_A + \theta_B 3R)$
- (3) $M_A = FEM_A + \frac{4 EI}{L} (2\theta_A + \theta_B + 3R)$
- (4) None of the above

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

45. What is the shear equation in slope deflection method for the portal frame shown below?

(1)
$$\frac{M_{AB} + M_{BA}}{L} + \frac{M_{CD} + M_{DC}}{L} + P = 0$$

(2)
$$\frac{M_{AB} + M_{BA}}{L} + \frac{M_{BC} + M_{CB}}{L} + P = 0$$

(3)
$$\frac{M_{BC} + M_{CB}}{L} + \frac{M_{CD} + M_{DC}}{L} + P = 0$$

(4)
$$\frac{M_{BC} + M_{CB}}{I} + P = 0$$

46. A bolt is subjected to a shear stress of $f_{\rm sb}$ and a tensile stress of $f_{\rm tb}$. If the permissible stresses in shear and tension are $f_{\rm asb}$ and $f_{\rm atb}$ respectively then the stress should satisfy:

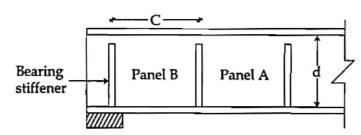
$$(1) \quad \frac{f_{\rm sb}}{f_{\rm asb}} + \frac{f_{\rm tb}}{f_{\rm atb}} \le 1.0$$

(2)
$$\left(\frac{f_{\rm sb}}{f_{\rm asb}}\right)^{1.4} + \left(\frac{f_{\rm tb}}{f_{\rm atb}}\right)^{1.4} \le 1.0$$

$$(3) \quad \frac{f_{\rm sb}}{f_{\rm asb}} + \frac{f_{\rm tb}}{f_{\rm atb}} \le 1.4$$

(4)
$$\left(\frac{f_{\rm sb}}{f_{\rm asb}}\right)^2 + \left(\frac{f_{\rm to}}{f_{\rm atb}}\right)^2 \le 1.0$$

- 47. The failure of a column depends upon :
 - (1) weight of a column
- (2) length of column
- (3) slenderness ratio
- (4) cross sectional area of column


कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

- 48. In which form is the permissible stress in columns, f by Merchant Rankine's formula?
 - $(1) \quad f \propto \frac{\pi^2 E}{\lambda^2}$

- (2) $f \propto \frac{f_y}{1 + 0.2 \sec(c. \lambda. \sqrt{f})}$
- (3) $\frac{1}{(f)^n} \propto \frac{1}{(f_y)^n} + \frac{1}{(f_{cr})^n}$
- (4) $f \propto \frac{f_y}{\phi + \sqrt{\phi^2 \lambda^2}}$
- 49. The partial safety factors for dead load and leading live load in calculation of vertical deflection in a steel beam are :
 - (1) 1.0 and 1.0
- (2) 1.0 and 1.2
- (3) 1.2 and 1.0
- (4) 1.2 and 1.2
- 50. A square base plate of 1200 mm × 1200 mm is provided under a column 15 MB 400, which is carrying an axial force of 1440 kN along with bending moments of 288 kNm and 144 kNm about its Major and Minor axes respectively.

The maximum pressure (neglecting poisson's effect) any where on the base plate is :

- (1) 2.5 N/mm^2
- (2) 2.6 N/mm²
- (3) 2.75 N/mm²
- (4) 3.0 N/mm²
- 51. The effective throat thickness of a fillet weld depends upon:
 - (1) angle between fusion faces
- (2) length of weld
- (3) permissible shear stress
- (4) type of weld
- 52. For plate girder shown in figure below by using what action is panel A designed?

- Simple post critical action
- (2) Tension field action
- (3) Bearing force action
- (4) None of the above

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

53.	3. The maximum permissible vertical deflection of a simply supported beam in non indust buildings if the element is susceptible for cracking is:							in non industrial			
	(1)	span/360	(2)	span/350		(3)	span/325	(4)	span/300		
54.		ich of the options made ?	given	below are tr	ue at	out h	ow the commo	nly used	structural steels		
	(a)	Very low carbo	n stee	ls, < 0.1%							
	(b)	Low carbon ste	el	0.1 to 0.25	5%						
	(c)	Medium carbor	ı steel	0.25 to 0.6	%						
	(d)	High carbon ste	eel	0.6 to 1.19	6						
	Ans	Answer options :									
	(1)	(a) is true			(2)	(a) a	nd (b) are true	9			
	(3)	(a), (b) and (c) a	are tru	ıe	(4)	All a	are true				
55.	(1)	length of gro	uous	full size wel	d.			•.			
		(2) overall length of weld minus twice the size of weld.									
	(3)										
	(4)	4) overall length of weld plus twice the size of weld.									
56.		economical spaci ering respectively	_		ft, p	and r	are the costs	of truss,	purlin and roof		
	(1)	t = p + r	(2)	t=2p+r		(3)	t=p+3r	(4)	t=p+2r		
57.	Whi	ch statement is co	orrect	if splices are	prov	rided i	in the reinforc	ing bars	?		
	(1)	Lap splices shal	l not b	e used for l	oars l	arger	than 30 mm di	ameter.			
	(2)	For flexure tens							2		
	(3)										

For compression members ; Lap length = Ld or 30 φ whichever is greater.

(4)

- Dead weight of waist slab of a stair case spanning longitudinally is calculated as :
 - (1) $25 D \sqrt{1 + \left(\frac{R}{T}\right)^2}$
- (2) $25 \text{ d} \sqrt{1 + \left(\frac{R}{T}\right)^2}$

- $25 D \sqrt{1 + \left(\frac{T}{R}\right)^2}$
- 59. In the design of cantilever retaining wall, if the angle of repose (ϕ) is 30° then the relation between active earth pressure (Ka) and passive earth pressure (Kp) will be :
 - (1) $Ka = \frac{1}{3} Kp$ (2) Ka = 3 Kp (3) $Ka = \frac{1}{9} Kp$ (4) Ka = 9 Kp

- 60. A continuous beam shall be deemed to be deep beam when, the ratio of effective span to overall depth is less than :
 - (1) 2.0
- 2.5 (2)
- (3) 1.5
- (4) 1.0
- If a circular water tank resting on the ground has 275 mm thickness then for M-25 grade concrete and Fe 415 steel, the minimum percentage of area of steel (Ast) provided is :
 - (1)(0.12%) bT
- (2) (0.16%) bT
- (3) (0.20%) bT
- (4) (0.24%) bT
- 62. Substitute frame method is used to analyse the building frame if the frame is subjected to
 - Lateral loads due to wind (1)
- (2)Lateral loads due to earthquake
- (3) Vertical live load only
- (4) Vertical dead load and live loads

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Minimum depth of foundation calculated by Rankine's formula for the design of retaining 63.

Where, q₀=safe bearing capacity of soil

 γ = Density of soil,

 ϕ = Angle of repose

- (1) $\frac{\gamma}{q_0} \left(\frac{1 \sin \phi}{1 + \sin \phi} \right)^2$
- (2) $\frac{q_0}{\gamma} \left(\frac{1 \sin \phi}{1 + \sin \phi} \right)^2$
- (3) $\frac{\gamma}{q_0} \left(\frac{1 + \sin \phi}{1 \sin \phi} \right)^2$
- (4) $\frac{q_0}{\gamma} \left(\frac{1 + \sin \phi}{1 \sin \phi} \right)^2$
- If 'L' is the length of cantilever slab measured parallel to the fixed edge, the effective width of the cantilever slab shall not exceed: (For slabs carrying concentrated load)
 - (1)
- (2) $\frac{2L}{3}$ (3) $\frac{L}{2}$
- In singly reinforced sections, when the section is under-reinforced, the relation between depth of neutral axis (x_u) and the limiting value of depth of neutral axis (x_u) max is:
 - (1) $x_u = x_u$, max

 $(2) \quad x_{u} < x_{u'} \text{ max}$

(3) $x_u > x_u$, max

- (4) none of the above
- Maximum reinforcement provided in a beam section shall not exceed ______. 66.

 - (1) $\frac{0.85}{f_{y}}$ (bd) (2) $\frac{0.87}{f_{y}}$ (bd) (3) 0.04 (bd) (4) 0.04 (bD)

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

BO7

67.	7. Match the minimum number of longitudinal steel bars required in columns as per cross section of column:										
	(a)	Rect	angul	ar colum	n (i	i) 4					
	(b)	Circ	ular c	olumn	(1	ii) 5					
	(c)	Octa	gona	l column	(1	iii) 6					
					(1	iv) 8					
	Ans	wer o	ption	s:							
		(a)	(b)	(c)							
	(1)	(i)	(ii)	(iii)							
	(2)	(i)	(iii)	(iv)							
	(3)	(iv)	(iii)	(i)							
	(4)	(iii)	(i)	(iv)							
68.	resp	and e	qual s ly. W	stress. The hat will b	e percenta e the total	ge loss	in each ntage lo	cable is found to ss in prestressing	be 6%, g force		3 5
	(1)	12%	•	(2)	4%		(3)	3%	(4)	6%	
	tens		any p	point of th	e cable di	stance '	x' from	the end is give $P_0 R e^{-\mu x}$	n by		
70.				dent inela f is know		mation	of stee	el resulting from	sustair	ned stress and a	
	(1)	Shri	nkage	(2)	Creep		(3)	Deformation	(4)	Relaxation	
71.								n the applied pre			
	(1)	Tran	smiss	ion zone		(2)) And	chor zone			
	(3)	Dist	ributio	on zone		(4)) End	l block zone			
कच्च	या का	मासाठी	जागा	/SPACE	FOR ROU	GH W	ORK	st .			
										P.T.O.	
		~						Approximation 1 professor for		والمراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	×

- 72. A simply supported prestressed concrete beam of span 10 m and subjected to U.D.L. of 30 kN/m (inclusive of self weight). A prestressing force of 1500 kN is applied through a parabolic cable having zero eccentricity at both ends and maximum value (h) at centre of span then what will be the dip (h) if load balancing concept is applied?
 - (1) 250 mm
- (2) 100 mm
- (3) 50 mm
- (4) 25 mm
- 73. Prestressed concrete members which are designed to allow significant tensile stresses to occur at service loads and such tensile regions are usually additionally reinforced with non-prestressed reinforcement are known as ______.
 - (1) Prestressing tension members
- (2) Fully prestressing members
- (3) Non-prestressing members
- (4) Partial prestressing members
- 74. A simply supported prestressed concrete beam of 300 × 500 mm in c/s is subjected to a superimposed load of 20 kN/m over a span of 10 m. If a prestressing force of 1000 kN is applied through a straight tendon located along centroidal axis then what is the extreme top fibre stress at the end support:
 - (1) 20 mPa
- (2) 26.67 mPa
- (3) 19.33 mPa
- (4) 6.67 mPa
- 75. Which statement is not applicable to prestressed concrete members?
 - (1) It combines high strength concrete with high strength steel in an active manner.
 - (2) High tension steel wires are used to transfer tensile stresses to concrete section.
 - (3) Prestressing the steel against the concrete to counter balance any tensile stress produced by dead load and live load.
 - (4) Load balancing concept enables the transformation of a flexure member into a member under direct stress.
- 76. For the production of pre-tensioned members on large scale, a system usually adopted is
 - (1) Gifford Udall System
- (2) Magnel Blaton System

(3) Hoyer System

- (4) P.S.C. Monowire System
- 77. When the tendons are placed at an eccentricity of e, the extreme fibre stresses in beam are :
 - $(1) \quad \frac{P}{A} \mp \frac{Pe}{Z} \pm \frac{M}{Z}$

(2) $\frac{P}{A} \mp \frac{Pe}{A} \pm \frac{M}{Z}$

(3) $\frac{P}{Z} \mp \frac{Pe}{Z} \pm \frac{M}{Z}$

 $(4) \quad \frac{P}{A} \mp \frac{Pe}{A} \pm \frac{M}{A}$

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

78. In simply supported prestressed concrete beams with uniformly distributed loads over its

	enti	re span.									
	Statement 1 :		The size of limiting the midspan.	The size of limiting zone is maximum at supports and reduces towards the midspan.							
	Stat	ement 2 :	The Bending moments due to uniformly distributed loads in a simply supported beam are zero at supports and maximum at midspan.								
	(1)	Statement statement		I is true, statement 2 is true and statement 2 is the correct explanation of I.							
	(2)	Statement of stateme		but statement 2 is not the correct explanation							
	(3)	Statement	1 is true and statem	ent 2 is	false.						
	(4)	Statement	1 is false and staten	nent 2 is	s true.						
79.	The	The 'Force - Majeure' clause in a contract document generally refers to :									
	(1)	Agitation	and strikes only	(2)	Epidemic of large proportion only						
	(3)	(1) and (2)	above	(4)	None of the above						
80.	Injury frequency rate per lakh of man-hours worked is calculated as :										
	(1)		rs lost × 1,00,000 un-hours worked								
	(2)		sabling injuries \times 1,0 o. of man - hours wo								
	(3)	Injury	rvice rate								
	(4)	No. of disabling injuries Total No. of man - hours worked × 100									
81.	Whi	ch of the fol	lowing is not a type	of fire e	xtinguisher ?						
	(1)	Water typ	e extinguishers								
	(2)) Foam type extinguishers									
	(3)	Dry chemi	ical powder extingui	shers							
	(4)	Nitrogen e	extinguishers								

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

82.	Decrease or reduction in the value of an equipment or asset is called as :										
	(1)	Saturation	(2)	Depreciation	n	(3)	Negotiation	(4)	Valuation		
83.	The application of human biological science along with engineering sciences for achiev the optimum level of adjustment between man and his work is known as										
	(1)	Ergonomics		(2	2)	Ecor	nomics				
	(3)	Ecology		(4	4)	Engi	ineering science	and E	conomics		
84.	Whi	Which are the major methods of quality control ?									
	(1)	Sampling	(2)	Inspection		(3)	Testing	(4)	All the above		
85.	A process of transporting material from one in a continuous stream is known as						to another over	r a stat	ionary structure		
	(1)	Transporting	(2)	Hauling		(3)	Conveying	(4)	Hoisting		
86.	Whi	Which IS code is applicable for final inspection and testing?									
	(1)	IS 14001	(2)	IS 14003		(3)	IS 14004	(4)	IS 14000		
87.	Who among the following proposed the concept "Fourteen Principles of Administration":										
	(1)	Elton Mayo		(2	2)	Tayl	or F.W.				
	(3)	Henry Fayol		(4	1)	Non	e of the above				
88.	Total float can be expressed as :										
	(a)	(a) latest start time - earliest start time									
	(b)	latest finish tin	ne - ear	liest finish tim	e		4.5 *				
	Ans	wer options :					8				
	(1)	Both (a) and (b	o) are fa	alse (2	2)	(a) is	true but (b) is f	alse			
	(3)	Both (a) and (l	o) are t	rue (4	1)	(a) is false but (b) is true					
			_								

- 89. What are the advantages of a good site layout or job layout?
 - (1) Smooth and economical working of project.
 - (2) It reduces the completion time of project.
 - (3) Provides more safety on site.
 - (4) All the above.
- 90. A method proposes a systematic strategy for reducing the system of equations to the upper triangular form using the forward elimination approach and then for obtaining values of unknowns using the back substitution process. This process is used in ______.
 - (1) Gauss Elimination method
- (2) Gauss Seidel method
- (3) Matrix Inversion method
- (4) Method of relaxation
- 91. The area under the polynomial for three equal intervals (h) calculated by Simpson's rule is
 - (1) $\frac{h}{6} \left\{ f(x_0) + 4f(x_1) + 2f(x_2) + f(x_3) \right\}$
 - (2) $\frac{h}{3} \{ f(x_0) + 4f(x_1) + 2f(x_2) + f(x_3) \}$
 - (3) $\frac{h}{3} \{ f(x_0) + 4 [f(x_1) + f(x_3)] + 2 f(x_2) \}$
 - (4) $\frac{h}{6} \left\{ f(x_0) + 4 \left[f(x_1) + f(x_2) \right] + 2 f(x_3) \right\}$
- 92. Name the iterative method which falls under the category of Bracketing methods that start with two initial guesses that bracket the root and then systematically reduce the width of the bracket until the solution is reached.
 - Newton Raphson method
- (2) Bisection method

(3) Secant method

(4) Fixed point method

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

93. The solution of the equations,

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

by Jacobi's iteration method is:

(1) 1, -1, 1

(2) -1, -1, -1

(3) 1, 1, 1

(4) -1, -1, 1

94. The value of $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Trapezoidal rule is:

- (1) 1.4108
- (2) 1.3108
- (3) 1.8104
- (4) 1.0418

95. The solution for simultaneous equations by Gauss elimination method for,

$$2x + 3y - z = 5$$

$$4x+4y-3z=3$$

$$2x-3y+2z=2$$
 is:

- (1) x=3, y=2, z=1
- (2) x=2, y=1, z=3
- (3) x=1, y=2, z=3
- (4) x=1, y=3, z=2

96. The real root of the equation:

$$f(x) = x^3 - x - 1 = 0$$
 is:

- (1) 1.26
- (2) 1.25
- (3) 1.24
- (4) 1.23

97. What is the area of bending moment diagram of a simply supported beam subjected to triangular load of intensity 'W' kN/m at centre of span (L) and zero at both ends using

Simpson's rule, assuming an equal interval of $\left(\frac{L}{2}\right)$?

- (1) $\frac{WL^3}{8}$
- (2) $\frac{WL^3}{12}$
- (3) $\frac{WL^3}{16}$
- $(4) \quad \frac{WL^2}{18}$

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

98. From the following table the area bounded by the curve and the x-axis from x=7.47 to x=7.52 is :

х	7.47	7.48	7.49	7.50	7.51	7.52
y = f(x)	1.93	1.95	1.98	2.01	2.03	2.06

- (1) 0.09569
- (2) 0.09659
- (3) 0.09965
- (4) 0.09865
- 99. The process of translating physical problem into a mathematical problem involves; making a number of simplifying assumptions, identification of important variables and postulation of relationships between variables. The process is called as:
 - (1) Modelling
- (2) Validation
- (3) Convergence
- (4) Pivoting
- 100. If 'A' is a square matrix as given below; then adjoint of matrix A will be _____

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

(1)
$$\begin{bmatrix}
8 & -2 & -2 \\
8 & -2 & -2 \\
8 & -2 & -2
\end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 8 & 2 & 2 \\ 2 & 8 & 2 \\ 2 & 2 & 8 \end{bmatrix}$$

$$\begin{bmatrix}
 8 & -2 & -2 \\
 -2 & 8 & -2 \\
 -2 & -2 & 8
 \end{bmatrix}$$

- o 0 o -

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- २०१५ परीक्षेचा दिनांक : ९ व १० जानेवारी, २०१६ विषय : प्रश्नपत्रिका क्र.२ (स्थापत्य अभियांत्रिकी पेपर - I)

महाराष्ट्र लोकसेवा आयोगामार्फत घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), (मुख्य) परीक्षा - २०१५ या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबावत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नाँद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे							
क्रमांक	संच A	संच B	संच C	संच D				
1	3	1	1	1				
2	1	3	1	3				
3	1	3	2	4				
4	3	4	2	3				
5	1	1	3	4				
6	4	2	1	1				
7	3	3	3	3				
8	2	4	3	2				
9	2	4	4	3				
10	4	2	4	4				
11	3	1	3	1				
12	4	-3	4	2				
13	3	3	4.	2				
14	3	1	3	3				
15	4	4	3	3				
16	3	2	2	3				
17	4	4	3	4				
18	1	2	2	1				
19	3	3	1	3				
20	2	3	2	4				
21	3	2	4	2				
22	2	3	3	3				
23	2	3	3	2				
24	4	4	4	3				
25	2	4	2	1				

प्रश्न		उत	तरे	
क्रमांक	संच A	संच B	संच C	संच D
26	3	2	2	4
27	1	1	4	3
28	4	2	3	1
29	1	3	3	4
30	3	1	1	2
31	2	1	4	4
32	1	4	1	2
33	4	3	1	4
34	4	4	4	1
35	2	2	2	3
36	1	1	1	1
37	2	2	1	2
38	3	3	3	4
39	2	1	3	2
40	2	3	2	2
41	4	1	1	2
42	1	4	4	1
43	3	2	2	1
44	2	2	2	2
45	1	2	2	3
46	4	1	2	3
47	3	3	1	3
48	3	1	1	1
49	1	3	3	1
50	1	3	1	4

Date -3rd March, 2016

प्रश्नपत्रिका क्र.२ (स्थापत्य अभियांत्रिकी पेपर - I)

प्रश्न	उत्तरे								
क्रमांक	संच A	संच B	संच C	संच D					
51	1	1	1	1					
52	2	2	3	1					
53	1	1	4	2					
54	3	4	2	1					
55	1	2	3	3					
56	2	1	1	2					
57	2	1	4	2					
58	1	2	2	2					
59	3	3	4	3					
60	2	2	2	1					
61	3	2	1	2					
62	4	4	3	4					
63	2	1	3	4					
64	1	4	2	2					
65	2	3	2	3					
66	4	2	1	2					
67	2	2	2	1					
68	4	4	1	4					
69	1	4	4	4					
70	4	2	2	1					
71	2	3	1	3					
72	1	1	4	2					
73	4	1	2	1					
74	2	2	1	1					
75	2	4	2	1					

प्रश्न	उत्तरे								
क्रमांक	संच ∧	संच B	संच C	संच D					
76	3	1	4	2					
77	1	1	1	2					
78	1	2	3	4					
79	3	4	4	4					
80	2	2	1	4					
81	4	2	3	2					
82	2	3	2	1					
83	1	3	2	2					
84	4	2	3	3					
85	3	3	3	3					
86	2	3	4	3					
87	3	4	2	2					
88	3	1	4	3					
89	4	4	3	4					
90	1	1	2	1					
91	#	3	1	4					
92	2	1	#	4					
93	1	1	4	1					
94	1	#	4	1					
95	3	3	3	3					
96	2	1	3	2					
97	4	2	1	#					
98	3	2	1	1					
99	1	4	2	3					
100	4	4	1	2					

2

Date -3rd March, 2016

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

उघड

सील

心

सूचनेविना

पर्यवेक्षकांच्या

सहाराष्ट्र आक्रेयंत्रिकी सेवा (स्थापत्य) (मुख्य) पराद्र्या-2015

A

2016

CODE: CO7

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका-III

एकूण प्रश्न : 100

स्थापित्य अभियांत्रिकी पेपर-2

एकूण गुण : 200

शेवटचा अंक

वेळ : 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.

केंद्राची संकेताक्षरे

- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्प्येन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकच्या अंतिम पृष्टावर पहा

1.	The	modern electron	nic Tac	heometers are a	combi	nation of :		
	(a)	An electronic	theodo	lite				
	(b)	An electronic	data co	ollector				
	(c)	An Electric dis	stance	measurement				
	Ans	wer options :						
	(1)	(a) and (b) onl	y	(2)	(b)	and (c) only		
	(3)	(a) and (c) only	У	(4)	All	of the above		
2.	In c	hain surveying, j	perpen	diculars to the ch	nain li	ne are set out by	:	
	(1)	a theodolite		(2)	a p	rismatic compass	;	
	(3)	a clinometer		(4)	an o	optical square		
3.	Leas	st count of a leve	lling s	taff is :				
	(1)	1 cm		(2)	5 m	ım		
	(3)	1 mm		(4)	Nor	ne of the above		
4.		-	_	B.M. = R.L. of 150 or was 1.450 m.				
	(1)	154.300 m	(2)	146.300 m	(3)	150.800 m	(4)	145.800 m
5.		is the number of		of a traverse, whi	le the	odolite traversing	the su	m of the interior
	(1)	$(2n-4)\times90^{\circ}$	(2)	$(2n+4) \times 90^{\circ}$	(3)	$(2n \pm 4) \times 90^{\circ}$	(4)	360°
6.		at will be the cu	ırvatuı	re correction for	staff	reading, in leve	lling fo	or a distance of
	(1)	0.0673 m	(2)	0.0785 m	(3)	78.50 m	(4)	6.73 m
7.	Spir	e test is carried o	out for	the permanent a	djustn	nent of :		
	(1)	Dumpy level	(2)	Auto level	(3)	Tilting level	(4)	None of these
8.	The	lines joining the	points	of equal elevatio	ns on	the surface of th	e earth	are known as :
	(1)	isohyets	(2)	isogonics	(3)	agonics	(4)	contours
_			OF 50	an norters were				
के घ	श्राका	मासाठा जागा /SPA	ACE FO	or rough woi	KK			

P.T.O.

9.		at is the magne place is 186°?		nation at a pl	ace if the	magnetic bear	ing of th	e sun at noon at
	(1)	6° W	(2)	6° E	(3)	0° W	(4)	0° E
10.		process of locations have alrea					table fron	n stations whose
	(1)	Orientation	(2)	Radiation	(3)	Intersection	(4)	Resection
11.	Salv	age value is de	fined as	: *				
	(1)	value of dism	antled r	naterials of a	property	at the end of i	ts utility	period
	(2)	estimated val dismantled	ue of a	built up prop	erty at t	he end of its 1	useful lif	e without being
	(3)	value of the p	property	shown in the	account	book in that p	articular	year
	(4)	present value	of a pro	perty conside	ering it to	be replaced at	the curr	ent market rates
12.				nich an owner	of a prop	erty enjoys thro	ough or o	ver the property
	OI al	nother is know	nas:					
	(1)	Property righ		Lease right	(3)	Legal right	. (4)	Easement
13.	(1)		t (2)	Lease right	(3)	Legal right	. (4)	Easement
13.	(1)	Property righ	t (2)			<u> </u>	. (4)	Easement
13.	(1)	Property righ	t (2)	t should be co	ompetent	<u> </u>	. (4)	Easement
13.	(1) For (a)	Property right a contract to be Parties to the	t (2) valid: contrac sal and	t should be co	ompetent		. (4)	Easement
13.	(1) For (a) (b)	Property right a contract to be Parties to the Proper propo	t (2) valid: contrac sal and of partie	t should be co its acceptance is involved in	ompetent		(4)	Easement
13.	(1) For (a) (b) (c) (d)	Property right a contract to be Parties to the Proper propo Free consent	t (2) valid: contrac sal and of partie	t should be co its acceptance is involved in	ompetent		(4)	Easement
13.	(1) For (a) (b) (c) (d)	Property right a contract to be Parties to the Proper propo Free consent of Lawful consider	t (2) valid: contrac sal and of partie	t should be co its acceptance es involved in	ompetent e the agree		. (4)	Easement
13.	(1) For (a) (b) (c) (d) Ans	Property right a contract to be Parties to the Proper propo Free consent Lawful considuer	t (2) valid: contrac sal and of partie deration	t should be co its acceptance es involved in	ompetent the agree	ement	. (4)	Easement
13.	(1) For (a) (b) (c) (d) Ans (1) (3)	Property right a contract to be Parties to the Proper propo Free consent Lawful considuer options: (a) and (c) (a), (b) and (c)	t (2) valid: contrac sal and of partie deration	t should be controlled in	the agree (2) (c) (4) All	ement only of the above excavation exc		Easement

Λ (ender is said to be								
(a)	When it is not	submi	ted in the form so	old by	the department				
(b)	When the tend	er is n	ot properly filled	in or	signed by the co	ntracto	or		
(c)				by w	ay of adding in	definit	e an l uncertain		
(d)			-	site ea	arnest money in	the ma	nner prescribed		
Ans	wer options :								
(1)	(a), (b), (c)	(2)	(a), (b), (c), (d)	(3)	(a), (d)	(4)	(d)		
At v	what change of p	rice le	vel is a revised es	timate	prepared ?				
(1)	2.0%	(2)	2.5%	(3)	4.0%	(4)	5.0%		
				llow	ance of 10% of	the pr	ime cost as the		
(1)	The Rates and	Costs	Committee, 1957	(2)	MPWD Comm	nittee,	1940		
(3)	CPWD Commi	ittee, 1	950	(4)	MPSC Commi	ttee, 20	010		
The capitalised value of a property fetching a net annual rent of ₹ 1000 with highest rate of interest prevailing being 5%, would be:									
(1)	₹ 800	(2)	₹ 1000	(3)	₹ 10,000	(4)	₹ 20,000		
						,	2 2 2 2 2 2 2 2 2 2		
			the contractor is of the tender, kno			some a	mount with the		
		antee o				some a	F.D.		
dep: (1)	artment, as guara Bank Guarante	e (2)	of the tender, kno	wn as (3)	S.D.				
dep: (1)	artment, as guara Bank Guarante	e (2)	of the tender, kno EMD.	wn as (3)	S.D.	(4)			
(1) If th (1)	Bank Guarante Be porosity of a so $\frac{2}{3}$	ee (2) oil sam (2)	of the tender, kno EMD.	(3) d ration (3) 2 cm :	S: S.D. o is: $\frac{1}{2}$ ×2 cm×2 cm w	(4) (4) eighs 1	F.D. 1 6 gm when it is		
	(b) (c) (d) Ans (1) At v (1) (3) The of in	(b) When the tend (c) When the tend (d) When it is not for the purpose Answer options: (1) (a), (b), (c) At what change of p (1) 2.0% Which committee recontractor's profit w (1) The Rates and (3) CPWD Committee of interest prevailing	 (b) When the tender is reliabilities of usual characteristics of usual characteristics of usual characteristics. (d) When it is not support for the purpose in PV Answer options: (1) (a), (b), (c) (2) At what change of price levels: (1) 2.0% (2) Which committee recomm contractor's profit would be the contractor's profit would be the committee, 1 The Rates and Costs the capitalised value of a positive prevailing being the committees. 	 (b) When the tender is not properly filled (c) When the tender is made conditional liabilities of usual character to it. (d) When it is not supported by the require for the purpose in PWD form: Answer options: (1) (a), (b), (c) (2) (a), (b), (c), (d) At what change of price level is a revised es (1) 2.0% (2) 2.5% Which committee recommended that an a contractor's profit would be reasonable? (1) The Rates and Costs Committee, 1957 (3) CPWD Committee, 1950 The capitalised value of a property fetching of interest prevailing being 5%, would be: 	 (b) When the tender is not properly filled in or (c) When the tender is made conditional by we liabilities of usual character to it. (d) When it is not supported by the requisite ear for the purpose in PWD form: Answer options: (1) (a), (b), (c) (2) (a), (b), (c), (d) (3) At what change of price level is a revised estimated (1) 2.0% (2) 2.5% (3) Which committee recommended that an allow contractor's profit would be reasonable? (1) The Rates and Costs Committee, 1957 (2) (3) CPWD Committee, 1950 (4) The capitalised value of a property fetching a net of interest prevailing being 5%, would be:	 (b) When the tender is not properly filled in or signed by the concept. (c) When the tender is made conditional by way of adding in liabilities of usual character to it. (d) When it is not supported by the requisite earnest money in for the purpose in PWD form: Answer options: (1) (a), (b), (c) (2) (a), (b), (c), (d) (3) (a), (d) At what change of price level is a revised estimate prepared? (1) 2.0% (2) 2.5% (3) 4.0% Which committee recommended that an allowance of 10% of contractor's profit would be reasonable? (1) The Rates and Costs Committee, 1957 (2) MPWD Committee, 1950 (4) MPSC Committee of interest prevailing being 5%, would be: 	 (b) When the tender is not properly filled in or signed by the contractor (c) When the tender is made conditional by way of adding indefinit liabilities of usual character to it. (d) When it is not supported by the requisite earnest money in the markor for the purpose in PWD form: Answer options: (1) (a), (b), (c) (2) (a), (b), (c), (d) (3) (a), (d) (4) At what change of price level is a revised estimate prepared? (1) 2.0% (2) 2.5% (3) 4.0% (4) Which committee recommended that an allowance of 10% of the precontractor's profit would be reasonable? The Rates and Costs Committee, 1957 MPWD Committee, 20 The capitalised value of a property fetching a net annual rent of ₹ 1000 voof interest prevailing being 5%, would be: 		

- 22. Statement (A): In Boussinesq's theory of stress computations, soil is considered to be un-stressed before application of the load.
 - Statement (B): The contact pressure distribution under a rigid footing in cohesionless soil, is uniform throughout the width of the footing.
 - (1) Both the statements (A) and (B) are correct.
 - (2) Statement (A) is correct but (B) is wrong.
 - (3) Statement (A) is wrong but (B) is correct.
 - (4) Both the statements (A) and (B) are wrong.
- 23. A sample of dry sand was tested in direct shear test apparatus under a normal load of 72 kg. The shear load required to fail the sample was found to be 36 kg. The angle of internal friction (φ) will be:
 - (1) $\tan^{-1}\left(\frac{72+36}{36}\right)$
- (2) $\tan^{-1}\left(\frac{72+36}{72}\right)$

(3) $\tan^{-1} \left(\frac{36}{72} \right)$

- (4) $\tan^{-1}\left(\frac{72}{36}\right)$
- 24. A point load exerts a maximum vertical stress at a radial distance of 1 m and at a depth of :
 - (1) 0.817
- (2) 0.477
- (3) 1.00
- (4) 1.225
- 25. Statement (A): Coffer-dam is a structure to be constructed in standing water condition prior to the construction of bridge foundations.
 - Statement (B): Cutting edge and steining are the two essential component parts of the coffer-dam.
 - Both the statements (A) and (B) are true.
 - (2) Both the statements (A) and (B) are false.
 - (3) Statement (A) is true but (B) is false.
 - (4) Statement (B) is true but (A) is false.
- 26. From the following statements, select the most appropriate statement :

Westergaard's analysis for stress computation within soil mass assumes.

- (1) Point load at the surface and soil being homogeneous and isotropic
- (2) Line load at the surface and soil being homogeneous and non-isotropic
- (3) Point load at the surface and soil being homogeneous and non-isotropic
- (4) Line load at the surface and soil being non-homogeneous and isotropic

- 27. An all-around RCC peripheral retaining wall is constructed for a basement to retain soil on the other side. The retaining wall has RCC floor slab constructed at the top. The earth pressure on retaining wall will be analyzed in:
 - (1) Passive condition
 - (2) Active condition
 - (3) At rest condition
 - (4) Partially active and partially passive condition
- 28. Match the pairs:
 - (a) Compaction
- (i) Expulsion of water

(b) Swelling

- (ii) Sudden volume decrease
- (c) Consolidation
- (iii) Increase in volume

(d) Collapse

(iv) Expulsion of air

Answer options:

- (a)
- (b) (c)
- (1) (i)
- (iii) (iv) (ii)
- (2) (ii)
- (iii) (iv) (i)
- (3) (i)
- (iv) (ii) (iii)
- (4) (iv)
- (iii) (
- (ii)

(d)

- 29. The specific speed of turbine is defined as:
 - $(1) \quad \frac{H^{\frac{5}{4}}}{N\sqrt{P}}$
- $(2) \quad \frac{NP^{\frac{5}{4}}}{\sqrt{H}}$
 - $(3) \quad \frac{N\sqrt{P}}{H^{\frac{5}{4}}}$
- $(4) \quad \frac{N^{\frac{2}{4}}P}{\sqrt{H}}$

- 30. Muschel curves belong to the category of :
 - (1) main characteristic curves of a turbine
 - (2) operating characteristic curves of a turbine
 - (3) constant efficiency curves of a turbine
 - (4) operating characteristics of a pump
- 31. Pathlines refer to the motion of identified fluid particles of elements and therefore constitute a feature of the:
 - (1) Lagrangian Approach
- (2) Eulerian Approach
- (3) Rayleigh's Approach
- (4) None of the above

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

32.	The	separ	ation	of a b	oundary	layer occ	curs v	when :				
	(1)	the	flow	is acce	lerated p	past a bou	ındar	У	l.			
	(2)	the	bound	dary la	yer com	es to rest						
	(3)	any	adve	rse pre	essure is	encounte	red	,				
	(4)											
33.	Cho	ose th	e cor	rect m	atch :					-		
	(a)	Iner	tial fo	rce to	surface	tensile for	rce		(i)	Reynold's No.		
	(b)	Iner	tial fo	rce to	viscous	force			(ii)	Euler No.		
	(c)	Iner	tial fo	rce to	pressure	e force			(iii)	Mach No.		
	(d)	Iner	tial fo	rce to	elastic f	orce			(iv)	Weber No.		
									(v)	Froude No.		
	Ans	wer o	ption	s:								
		(a)	(b)	(c)	(d)							
	(1)	(iii)	(i)	(ii)	(iv)							
	(2)	(iii)	(ii)	(iv)	(i)							
	(3)	(iv)	(v)	(ii)	(iii)							
	(4)	(iv)	(i)	(ii)	(iii)							
34.	The	centre	of p	ressur	e will co	incide wit	th the	e centre	of g	ravity if a plane surface is :		
	(1)	Vert	ical				(2)	Horiz	zonta	1		
	(3)	Imm	ersed	in a g	gas		(4)	None	of th	ne above		
35.	insta	alled o	n it.	When	the pipe		d up	wards	in the	hich is measured by venturimeter e direction of flow, the reading of		
	(1)	will	incre	ase			(2)	will 1	remai	n same		
	(3)	will	decre	ase			(4)	may	flucti	uate with time		
36.	A st	ırge ta	nk is	provi	ded in h	ydropowe	er sch	emes t	o :			
	(1)	strer	ngther	n the p	penstock	s						
	(2)	redu	ce wa	ater ha	ammer p	ressure						
	(3)	redu	ice fri	ctiona	l losses i	n the syst	em					
	(4)	incre	ase t	he net	head					<u> </u>		
-						POLICIA				•		

- If three pipes of different diameters, lengths and friction factors are connected in series, 37. then:
 - (1) $f = f_1 + f_2 + f_3$

- (2) $hf_1 = hf_2 = hf_3$
- $Q = Q_1 + Q_2 + Q_3$
- (4) $Q_1 = Q_2 = Q_3$
- 38. The difference between theoretical discharge and actual discharge of pump is known as:
 - gap of discharge (1)
- differential discharge (2)

(3)slip of pump

- (4)suction gap
- A unit speed is obtained by which of the following equations with usual notations? 39.

- (1) $N_u = \frac{N}{\sqrt{H}}$ (2) $N_u = \frac{\sqrt{N}}{H}$ (3) $N_u = \frac{\sqrt{N}}{\sqrt{H}}$ (4) $N_u = \frac{N^{\frac{3}{2}}}{1.5}$
- 40. A turbine is a device which converts:
 - Hydraulic energy into mechanical energy (1)
 - (2)Mechanical energy into hydraulic energy
 - (3)Kinetic energy into mechanical energy
 - (4) Electrical energy into mechanical energy
- 41. Operating characteristic curves of a turbine are :
 - Varying speed curves
- Constant efficiency curves
- Constant head curves (3)
- (4)Constant speed curves
- Overall efficiency of a pump is obtained by which of the following equations with usual notations?
 - (1) $\eta_0 = \eta_{man} \times \eta_{mech}$
- (2) $\eta_0 = \eta_{hv} \times \eta_{mech}$

 $\eta_0 = \eta_{man} \times \eta_{hv}$

- (4) $\eta_0 = \eta_{\text{vol}} \times \eta_{\text{min}}$
- To produce a high head multi-stage centrifugal pumps, the impellers are connected:
 - in parallel (1)

- (2)in series
- (3)in parallel and in series both
- (4)none of the above

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

The specific speed(N_e) of a pump is given by:

- (1) $N_s = \frac{N\sqrt{Q}}{H_m^4}$ (2) $N_s = \frac{N\sqrt{P}}{H_m^4}$ (3) $N_s = \frac{N\sqrt{Q}}{H_m^4}$ (4) $N_s = \frac{N\sqrt{P}}{H_m^4}$

45. Number of buckets on a Pelton wheel are calculated by which equation with usual notations:

(1) $Z = 15 + \frac{D}{2d}$

- (2) $Z = 15 + \frac{2D}{d}$
- (3) $Z = 15 + 2\left(\frac{D}{d}\right)n$
- (4) $Z = 15 + \frac{d}{D}$

46. Which of the following statements is correct?

- Pelton wheel is a reaction turbine
- Pelton wheel is a radial flow turbine (2)
- Pelton wheel is an impulse turbine
- None of the above (4)

When specific information about the density of snowfall is not available, the water equivalent of snowfall is taken as:

- 50% (1)
- 30% (2)
- (3) 10%
- 90% (4)

The percentage of total quantity of fresh water in the world available in the liquid form is 48. about:

- 30% (1)
- (2)70%
- (3)11%
- (4) 51%

The precipitation in the form of water drops of sizes larger than 0.5 mm is known as : 49.

- (1)snow
- (2)drizzle
- (3) glaze
- rainfall (4)

The chemical that is found to be more suitable as water evaporation inhibitor is: 50.

- ethyl alcohol
- (2)
- methyl alcohol (3) cetyl alcohol
- (4)bytyl alcohol

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

51. In a DAD analysis the maximum average depth of rainfall for an 18 hr storm was 28 cm in an area of size 10 km². For the same duration the maximum average depth in an area of 1000 km² can be expected to be:

(1) = 28 cm

(2) < 28 cm

(3) > 28 cm

(4) depends upon the type of rainfall

52. The direct runoff is made up of :

(1) overland flow and infiltration

(2) surface runoff, prompt interflow and channel precipitation

(3) surface runoff, infiltration and evapotranspiration

(4) rainfall and evaporation

53. Precipitation falling during the growing period of a crop that is available to meet the evapo-transpiration needs of the crop is known as:

(1) effective rainfall

(2) transpiration

(3) conjuctive use

(4) potential rainfall

54. Evapotranspiration is confined to:

(1) daylight hours

(2) night-time only

(3) land surfaces only

(4) none of the above

55. The prismoidal formula with usual notations is:

(1)
$$\Delta S = \text{storage} = \frac{\Delta h}{5} [A_1 + 4A_2 + A_3...]$$

(2)
$$\Delta S = storage = \frac{\Delta h}{6} [A_1 + 4A_2 + A_3...]$$

(3)
$$\Delta S = \text{storage} = \frac{\Delta h}{3} [A_1 + 4A_2 + A_3...]$$

(4)
$$\Delta S = \text{storage} = \frac{\Delta h}{6} [A_1 + 3A_2 + 4A_3...]$$

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

56.	An aqueduct is a cross drainage work provided to carry canal over a natural drain when:										
	(1)	canal bed is at	the sa	me level as	the be	ed of t	he natural drain				
	(2)	canal bed is be	low th	e H.F.L. of	the na	atural	drain.				
	(3) canal bed is well above the H.F.L. of the natural drain.										
	(4) canal bed is below the bed of the natural drain.										
<u></u>	Оре	n flume outlet is	:								
	(1)	an orifice			(2)	a we	eir				
	(3)	a meter			(4)	none	e of the above				
58.	In a to :	saddle-siphon sp	illway	, an air vent	is pro	ovided	at the level of th	e full	reservoir surface		
	(1)	break the sipho	onic ac	tion at that	level						
	(2)	initiate the sipl	nonic a	action at tha	t leve	1					
	(3)	prevent cavitat	ion								
	(4)	maintain venti	ation	inside the si	iphon				: *)		
 59.		is aligned	d along	g a watersh	ed and	d runs	for most of its 1	ength	on a watershed.		
	(1)	Ridge canal		-	(2)	Con	tour canal				
	(3)	Side slope cana	al		(4)	Non	e of the above				
60.	As p	per IS 10430-1982	, the l	ife of canal	for co	ncrete	lining is assume	ed to b	e:		
	(1)	40 years	(2)	60 years		(3)	80 years	(4)	99 years		
61.	silt	maintain and a part of floo		•			e head regulator am side of the b				
	(1)	Radial gates	(2)	Spillway		(3)	Stilling basin	(4)	Under sluice		
62.	In a	syphon aqueduc	t, seve	ere condition	n of m	naximi	ım uplift on the	floor	occurs when :		
	(1)	canal runs full,	drain	is dry but v	vater	table i	s at the stream b	ed.			
	(2)	canal is dry an	d drai	n is passing	the h	ighest	flood.				
	(3)	canal runs dry	and d	rain also ru	ns dry	7.					
	(4)	both canal and			,	ş					
-											

A			
Δ			
А			

A							13				CO7
63.	In the overflowing water is guided smoothly over the crest and profile of spillway.										
	(1)	Strai	ight d	rop S	pillwa	y	(2)	Oge	e Spillway		*
	(3)	Tun	nel Sp	oillwa	y		(4)	Siph	on Spillway		
64.	The ratio of rate of change of discharge of an outlet to the rate of change of the discribution channel is known as										of the discharge
	(1)	Flex	ibility		(2)	Setting		(3)	Sensitivity	(4)	Efficiency
65.	Mat	ch the	pairs	for de	termir	nation of thi	ickness	of fle	xible pavement	by appi	opriate method.
	(a) California Bearing Ratio Method						(i)	$T = \frac{K(TI)(90)}{C^{\frac{1}{5}}}$	<u>-R)</u>		
	(b)	Cali	fornia	Resis	tance	Valve Met	hod	(ii)	$T = K \log_{10}^{\frac{P}{S}}$		
	(c)	Tria	xial M	lethod	i			(iii)	$T = \left[\frac{1.75P}{CBR} - \right]$	$\frac{A}{\pi}$ $\left]^{\frac{1}{2}}$	
	(d)	McL	eod N	1ethoo	đ			(iv)	$T = \sqrt{\frac{3PXY}{2\pi E_s \Delta}}$	$\left(\frac{1}{a^2}\right)^2 - a^2$	-
	Ans	wer o	ption	s:							
		(a)	(b)	(c)	(d)						
	(1)	(i)	(iv)	(iii)	(ii)						
	(2)	(iii)	(iv)	(ii)	(i)						
	(3)	(i)	(iii)	(ii)	(iv)						
	(4)	(iii)	(i)	(iv)	(ii)						

- 66. The maximum width of expansion joint and maximum spacing between expansion joint for rough interface layer is:
 - (1) 2.5 cm and 160 m
- 2.0 cm and 130 m
- 2.5 cm and 140 m
- (4)2.5 cm and 100 m

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

67.	The total length of tie bar of 1 cm diameter embedded in a cement concrete pavement with allowable working stress in steel in tension equal to 1400 kg/cm ² and allowable bond stress in deformed bars in concrete 24.6 kg/cm ² , is:										
	(1)	18.87 cm	(2)	113.82 cm	(3)	56.9 cm	(4)	28.45 cm			
68.	The	tests performed fo	r det	ecting whet	her bitume	n is cracked o	r not, is/	are :			
	(a)	Spot test		(b)	Solubility	test					
	(c)	Float test		(d)	Ductility	test					
	Sele	ct the correct alter	nativ	e out of the	following	:					
	(1)	(a) only	(2)	(a) and (b) only						
	(3)	(a), (c) and (d) or	nly	(4)	(b) and (d	l) only					
69.	The dowel bars are provided at :										
	(1)	Expansion joint									
	(2)	Contraction joint									
	(3)	Both (1) and (2)									
	(4)	Both (1) and (2) and Longitudinal joint									
70.	Fail	Failures in flexible pavements are due to the failure of :									
	(a)	Sub grade									
	(b)	Base course									
	(c)	Wearing Course									
	Ans	Answer options:									
	(1)	(a) and (b) only		(2)	(a) and (c	only only					
	(3)	(b) and (c) only		(4)	(a), (b) an	d (c)					
71.	Bitumen grade is specified as 80-100 or $\frac{80}{100}$ grade, this means :										
	(1)	Bitumen content	is be	tween 80 to	100.						
	(2)	Ductility of bitumen is between 80 to 100 mm.									
	(3)	· · · · · · · · · · · · · · · · · · ·									
	(4)	Temperature of t	he bi	tumen is be	etween 80 t	o 100°C					
			_								

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

72. The critical condition of stresses for combination of stresses in cement concrete during summer is:												
	(1) load stress + warping stress - frictional stress											
	(2)	load stress + wa	rping	stress .								
	(3)	(3) load stress + warping stress + frictional stress										
	(4)	load stress+fric	tiona	stress								
73.	Атта	ange the following	g laye	rs of flexible	e pavement	from top to be	ottom :					
	(a)	Sub-base course	2	(b)	Base cours	e						
	(c)	Surface course		(d)	Sub-grade							
	Ans	wer option :										
	(1)	(c), (a), (d), (b)		(2)	(c), (b), (d)	, (a)						
	(3)	(c), (a), (b), (d)		(4)	(c), (b), (a)	, (d)						
74.	A culvert can be defined as a crossing with a total length not exceeding between the faces of the abutments :											
	(1)	6 m	(2)	7 m	(3)	8 m	(4)	10 m				
75.	Wha	at should be the	minir	num width	of foot pat	h while desig	gning a l	oridge for rural				
	(1)	1.5 m	(2)	2.0 m	(3)	2.5 m	(4)	3.0 m				
 76.	Max	dimum scour dept	h at a	severe ben	d is :							
	(1)	1.25 D	(2)	1.50 D	(3)	1.75 D	(4)	2.00 D				
77.		can be de	fined	as a rise of	water level	on the upstre	am side (of a bridge.				
	(1)	Scour	(2)	Afflux	(3)	HFL	(4)	Discharge				
						TE .						
78.		area through w		he water fl	ows under	a bridge sup	erstructu	ire is known as				

79.	The type of bearing used on a bridge depends on :										
624	(1)	Extent of mov	ement a	at the	bridg	e end	5				
	(2)	Temperature	Variatio	ons							
	(3)	Load carried									
	(4)	All of the abo	ve								
80.		minimum ver 3.0 m³ per secon		earand	e for	open	ing o	f high leve	l bridg	es f	or discharge of
	(1)	150 mm	(2)	250	mm		(3)	350 mm		(4)	450 mm
81.		ridge designed to			al floc	ds to	pass t	hrough its v	ents bu	ıt all	owed to be over
	(1)	Submersible b	ridge			(2)	Und	er bridge			
	(3)	Seasonal brid	ge			(4)	Non	e of the abo	ve		
82.	Advantages of asphaltic concrete (Bituminous Concrete) are :										
	(a)	Durability			(b)	Imp	erviou	isness			
	(c)	Load spreadir	ng prop	erly	(d)	Qui	kly o	penable to t	raffic		
	(e)	Good skid Re	sistance								
	Ans	wer options :									
	(1)	(a) and (b) on	ly.		(2)	(a),	(b) and	d (c) only.			
	(3)	(a), (b), (c) and		ly.	(4)	All	of the	above.			
83.	Pick up the explosive used for tunnelling in soft rocks from the following :									:	
	(1)	Special gelatin	ne			(2)	Blas	ting gelatine	2		
	(3)	Ammonia dy	namite			(4)	Sem	i-gelatine			
84.	Whi	ch one of the fo	llowing	tunne	elling	metho	ods is	used for lay	ing un	der g	ground sewers ?
	(1)	Needle beam	method			(2)	Gerr	nan method	i		
	(3)	Army method	1,			(4)	Engl	ish method			
85.	To a	ttain the requir	ed shap	e of th	ne tun	nel w	e use	:			
	(1)	Cutholes	(2)	Chis	els		(3)	Easers		(4)	Trimmers

86.	For	initial surveys of	tunne	l, the foll	owing a	ctivitie	es are involved :		
	(a)	Marking portal	point	s with co	ncrete p	illars (on the ground.		
	(b)	Marking tunnel	oblig	atory poi	nts on t	he top	ographical maps	S.,	
	(c)	Driving lines be	tweer	the fixed	d obligat	tory p	oints.		
	(d)	Preliminary sett	ing of	f the tunr	nel on th	e topo	ographical survey	y of In	dian maps.
	The	correct sequence	of the	activitie	s are :				
	(1)	(b), (a), (d), (c)	(2)	(a), (b),	(c), (d)	(3)	(d), (b), (c), (a)	(4)	(c), (b), (d), (a)
87.		O' is a diameter o pirical formula is g			eters, the	en the	thickness of lin	ing in	mm as per the
	(1)	72 D	(2)	82 D		(3)	92 D	(4)	102 D
88.		concentration of should not be me			of the si	ze 0.5	to 5 microns ac	ljacent	to the working
	(1)	450 particles/cr	n^3		(2)	350	particles/cm ³		
	(3)	250 particles/cr	m ³		(4)	150	particles/cm ³		
89.	For	highways, tunnel	ling is	preferre	d if the	open o	cut exceeds :		
	(1)	10 m depth	(2)	15 m de	epth	(3)	20 m depth	(4)	25 m depth
90.	In c	ompressed air tur	nellin	g the vol	ume of f	ree ai	r provided is :		
	(1)	10 cuft per seco	nds p	er sq.ft. o	f face ar	rea			
	(2)	10 m³ per min.	per m	² of face	area			•,;	
	(3)	20 cuft per min.	per s	q.ft. of fa	ce area				
	(4)	6 m ³ per hour p	er m²	of face a	rea				
91.	The	length of the need	dle be	am used	in the ne	eedle l	beam method of	tunnel	ling is usually :
	(1)	2 m to 4 m	(2)	1.5 m to	4.5 m	(3)	6 m to 7 m	(4)	5 m to 6 m
92.	Indi	ian municipal soli	d was	te is not :	suitable	for in	cineration due to	:	
	(1)	less moisture co	ntent		(2)	high	moisture conter	nt	
	(3)	high calorific va	lue		(4)	Less	er organic conte	nt	
कळ	या का	————— मासाठी जागा /SPA	CE FC	OR ROUG	SH WOR	RK	· · · · · · · · · · · · · · · · · · ·		

93.	In waste water treatment plant secondary settling tanks are designed to remove:									
	(1) Organic settleable solids			Inorganic settleable solids						
	(3)	Bioflocculated solids	(4)	4) Dissolved solids						
94.	Dur	ing inversion condition :								
	(1)	Air temperature decreases with	altitud	de						
	(2)	Air temperature increases with	altitud	de						
	(3)	Air temperature remains consta	nt							
	(4)	Air temperature is zero								
95.		per Central Pollution Control Board the range of :	(CPC	CB) Air Quality Index for satisfacto	ory condition					
	(1)	301 to 400 (2) 201 to 300	0	(3) 101 to 200 (4) 51	to 100					
96.	Whe	When is a photo chemical smog formed ?								
	(1)	Air stagnation								
	(2)	High concentrations of hydrocarbon and nitrogen								
	(3)									
	(4)	None of these								
97.	For taking sewer line below road/canal/railway line, following type of sewer appartenance should be provided.									
	(1)	Storm water relief work	(2)	Siphon spillways						
	(3)	Jumping weir	(4)	Inverted syphon						
98.	Permanent hardness is removed by :									
	(a)	Lime soda process								
	(b)	Boiling								
	(c)	Demineralisation process								
	(d)	· · · · · · · · · · · · · · · · · · ·								
	Ans	wer options :								
	(1)	(a) only	(2)	(b) only						
	(3)	All of the above	(4)	(a), (c) and (d) only						

99.	As per CPCB, ambient Air Quality Standards in respect of noise during day time and
	night time for residential area are :

- (1) 75 dB and 70 dB respectively
- (2) 65 dB and 55 dB respectively
- (3) 55 dB and 45 dB respectively
- (4) 50 dB and 40 dB respectively

100. What is the food to micro-organism ratio in an aeration tank having following data? Flow = 1 m/d, MLSS = 2000 mg/L

Influent BOD₅=200 mg/L

Volume of aeration tank = 500 m³

- (1) 0.20
- (2) 5.00
- (3) 0.80
- (4) 1.25

-000-

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- २०१५ परीक्षेचा दिनांक : ९ व १० जानेवारी, २०१६ विषय : प्रश्नपत्रिका क्र. ३ (स्थापत्य अभियांत्रिकी पेपर - II)

महाराष्ट्र लोकसेवा आयोगामार्फत घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य)(मुख्य) परीक्षा - २०१५ या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबावत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नाँद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे							
क्रमांक	संच \Lambda	संच B	संच <i>C</i>	संच D				
1	#	4	4	2				
2	4	2	4	4				
3	2	4	#	4				
4	2	2	2	#				
5	1	1	2	1				
6	2	4	1	1				
7	4	1	2	4				
8	4	4	4	4				
9	1	#	4	2				
10	4	2	1	2				
11	2	4	2	2				
12	4	4	2	1				
13	4	2	4	2				
14	2	1	2	4				
15	2	4	2	4				
16	4	4	4	4				
17	1	2	4	2				
18	4	2	4	2				
19	2	2	1	4				
20	1	4	4	4				
21	2	3	4	2				
22	2	3	2	1				
23	3	1	3	3				
24	4	2	2	3				
25	3	3	3	3				

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
26	3	2	1	4			
27	3	4	3	2			
28	4	3	3	3			
29	3	2	2	4			
30	3	3	4	1			
31	1	2	3	2			
32	2	4	4	3			
33	4	4	1	4			
34	2	3	2	3			
35	2	2	2	2			
36	2	2	2	2			
37	4	1	3	2			
38	3	4	3	3			
39	1	2	3	3			
40	1	3	3	1			
41	4	3	1	1			
42	2	3	1	4			
43	2	1	2	2			
44	3	1	1	2			
45	1	1	4	1			
46	3	2	2	3			
47	3	1	1	1			
48	1	4	2	3			
49	4	3	3	4			
50	3	2	1	2			

Date -3rd March, 2016

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र. ३ (स्थापत्य अभियांत्रिकी पेपर - 11)

प्रश्न	उत्तरे					
क्रमांक	संच 🗛	संच B	संच C	संच D		
51	2	3	2	4		
52	2	2	4	1		
53	1	4	3	2		
54	4	1	2	2		
55	2	2	4	3		
56	3	2	4	1		
57	2	2	1	1		
58	1	2	2	2		
59	1	1	2	3		
60	2	3	3	1		
61	4	2	1	2		
62	2	4	1	4		
63	2	1	2	2		
64	1	1	2	2		
65	4	3	4	3		
66	3	4	3	3		
67	4	4	4	4		
68	2	4	3	4		
69	3	3	3	4		
70	4	2	4	2		
71	3	3	2	3		
72	1	1	4	1		
73	4	4	1	4		
74	#	3	2	4		
75	1	#	3	3		

प्रश्न	उत्तरे						
क्रमांक	संच \Lambda	संच B	संच C	संच D			
76	3	4	3	#			
77	2	1	#	4			
78	3	1	1	4			
79	4	2	4	2			
80	4	4	1	1			
81	1	4	4	1			
82	4	3	4	3			
83	3	4	4	3			
84	3	3	3	4			
85	4	3	3	2			
86	3	2	3	1			
87	2	1	3	4			
88	1	3	2	3			
89	3	3	4	3			
90	3	4	1,	3			
91	4	3	3	3			
92	2	2	4	3			
93	3	1	3	1			
94	2	3	2	2			
95	4	4	2	4			
96	3	3	4	4			
97	4	4	1	2			
98	4	2	3	4			
99	3	3	4	3,			
100	1	4	3	3			

2 # ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

Date - 3rd March, 2016

महाराष्ट्र अभिगंतिकी सेवा (स्वापत्य) (मुख्य) प-२०१७

प्रश्नपुस्तिका क्रमांक दि 17 डिसेंबर 2017

103941

प्रश्नपुस्तिका-I

संच क्र.

Q10

स्थापत्य अभियांत्रिकी पेपर – 1

वेळ: 2 (दोन) तास

एकूण प्रश्न : 100 एकूण गुण : 200

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

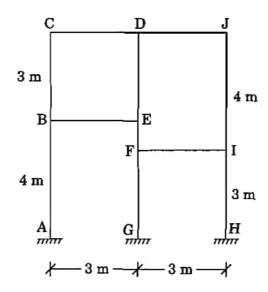
ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदबाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

* SEA√

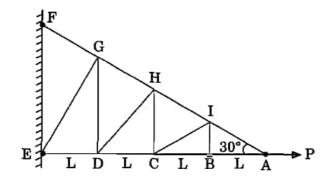

सील

NO

सूचनेविना

पर्यवेक्षकां

 Determine the degree of static and kinematic indeterminacy of the frame structure as shown in the figure.

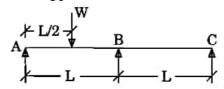


(1) 15,8

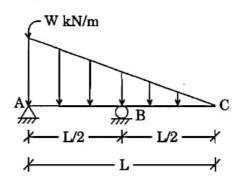
(2) 12, 12

(3) 12, 10

- (4) 15, 9
- 2. A cantilever truss as shown in the figure is subjected to a horizontal load 'P' at joint A. The total number of zero force members in the truss is


(1) 6

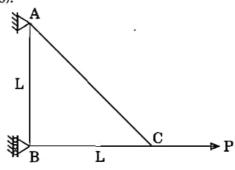
(2) 4


(3) 9

(4) 10

3. A continuous beam ABC is as shown in the figure. End supports are simple (i.e., A and C) and span AB = span BC = L. There is a concentrated load 'W' at the centre of the span AB while no load over the span BC. E_j is same for both the spans. What is the moment at the continuous support B?

- $(1) \quad -\frac{WL^3}{16}$
- $(2) \quad -\frac{WL^2}{32}$
- (3) $-\frac{3WL^2}{32}$
- $(4) \quad -\frac{3WL^2}{16}$
- 4. A beam ABC is supported and loaded as shown in the figure. Find the support reactions at A and B. (Neglect horizontal reaction at A)


(1) $\frac{\text{WL}}{3}$, $\frac{\text{WL}}{3}$

(2) $\frac{\text{WL}}{3}$, $\frac{\text{WL}}{6}$

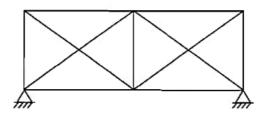
(3) $\frac{\text{WL}}{6}$, $\frac{\text{WL}}{3}$

(4) $\frac{\text{WL}}{6}$, $\frac{\text{WL}}{6}$

5. A simple truss ABC is supported at A and B as shown in the figure. If a point load (P) along BC is applied at joint C in horizontal direction, then what will be the vertical deflection at C? Assume same C/5 area and same materials (i.e., A, E, I same for all members).

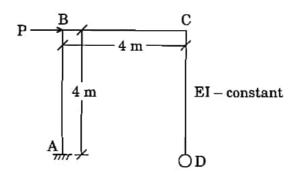
(1) $\frac{PL}{AE}$ (†)

(2) $\frac{2PL}{AE}$ (1)


(3) $\frac{PL}{AE}$ (1)

- $(4) \quad \frac{2PL}{3AE} \ (\downarrow)$
- 6. In a fixed beam of span 'L' subjected to a central concentrated load 'W', the fixed end moment and moment at midspan are respectively
 - (1) $\frac{WL}{12}$ and $\frac{WL}{6}$

(2) $\frac{WL}{8}$ and $\frac{WL}{8}$


(3) $\frac{WL}{6}$ and $\frac{WL}{12}$

- (4) None of the above
- 7. In the pin-jointed truss shown in the figure, the static degree of indeterminacy is

- (1) 2
- (2) 1
- (3) 3
- (4) 4

8. For the frame shown in the figure, the shear equation is

(1)
$$\frac{M_{BA} + M_{AB}}{4} + \frac{M_{CD}}{4} + P = 0$$

(2)
$$\frac{M_{AB} + M_{BC}}{4} + \frac{M_{DC}}{4} + P = 0$$

(3)
$$M_{AB} + M_{BA} + M_{CD} + M_{DC} = 0$$

(4)
$$M_{AB} + M_{BA} + M_{CD} + M_{DC} = P$$

9. In the force method of analysis of indeterminate trusses, if the truss is indeterminate to degree one, the change in length of redundant member due to unit force is found by using the formula

where A is cross-sectional area

- I Moment of Inertia
- n force in the member due to unit load application
- N force in the member due to actual load
- E Modulus of Elasticity

(1)
$$\sum \frac{\text{n NL}}{\text{EI}}$$

(2)
$$n \sum \frac{NL}{AE}$$

(3)
$$\sum \frac{n \text{ NL}}{AE}$$

$$(4) \quad \sum_{AE}^{NL}$$

10. In the moment distribution method, the carry over moment is equal to

- (1) double of its corresponding distributed moment and has same sign
- (2) one-half of its corresponding distributed moment and has same sign
- (3) one-half of its corresponding distributed moment and has opposite sign
- (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

11. For both ends of the fixed beam shown in the figure carrying a concentrated load eccentrically placed on the beam, deflection under load is

7

 $(1) \quad -\frac{\mathrm{W} \, \mathrm{a}^2 \mathrm{b}^2}{3 \, \mathrm{EIL}^2}$

 $(2) \quad -\frac{W ab^2}{3 EIL}$

(3) $-\frac{W a^3 b^3}{3 E IL^3}$

- (4) $-\frac{W a^3 b^2}{3 E IL^2}$
- 12. A continuous beam ABC is simply supported at supports A, B and C. Portion AB has span of 6 m and BC 4 m. Portion AB is loaded with a concentrated load of 120 kN downward at 3 m from A. The qualitative reactions shall be
 - (1) Reactions at A and B shall be upward and reaction at C shall be zero
 - (2) Reactions at A and B shall be upward and reaction at C shall be downward
 - (3) All reactions i.e., at A, B and C shall be upwards
 - (4) None of the above
- 13. A beam AB is simply supported and has flexural rigidity EI. The flexural strain energy of the beam having span 6 m and carrying a central point load of 10 kN is
 - (1) 142·38/EI

(2) 775/EI

(3) 225/EI

- (4) None of the above
- 14. A given determinate truss is loaded with gravity loads. Under these loads different nodes undergo deflection horizontally and vertically. Thereafter the truss is subjected to a temperature drop of 50°C in the lower chord only. The coefficient of expansion or contraction $\alpha = 11.7 \times 10^{-6}$ /°C. Which of the following statements is true?
 - Vertical and horizontal deflection along lower chord nodes remains the same.
 - (2) Vertical and horizontal deflections along lower chord nodes shall change.
 - (3) Horizontal deflection along lower chord nodes shall change but vertical deflection shall not change
 - (4) None of the above

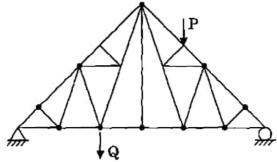
15. If the span and dip of a parabolic cable are L and h respectively, then the length of the cable is approximately equal to

L + 3/8 h(1)

(2) L + 8/3 h

 $L + 3/8 h^2/L$

(4) $L + 8/3 h^2/L$

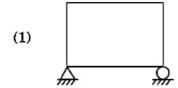

16. A three-hinged semicircular arch of radius R carries a uniformly distributed load W per unit run over the whole span.

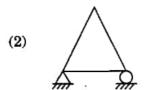
The horizontal thrust is

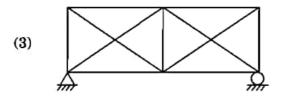
- (1)R

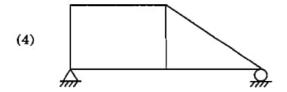
- $\frac{\text{WR}}{2} \qquad (3) \quad \frac{4}{3\pi} \text{ WR} \qquad (4) \quad \frac{2}{3\pi} \text{ WR}$

17. For the plane truss shown in the figure, the number of zero force members for the given loading is

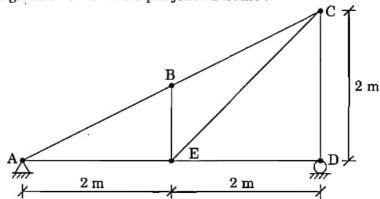

- (1) 4
- (2)8
- 11 (3)
- (4)13


18. A structure is said to be statically indeterminate when


- the number of unknown reaction components exceeds the number of equilibrium conditions.
- the number of equilibrium conditions exceeds the number of unknown reaction (2)components.
- the number of equilibrium conditions equal to the number of unknown reaction components.
- None of the above


कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

19. Which truss is the perfect truss out of the following?



- 20. The flexibility method is also known as the
 - (1) Energy method

- (2) Equilibrium method
- (3) Displacement method
- (4) Force method

21. The figure given below shows a pin-jointed frame:

What are the forces in members BE, CD and ED?

- (1) 10 kN, 5 kN and 5 kN
- (2) 10 kN, 5 kN and Zero
- (3) 5 kN, 10 kN and Zero
- (4) 5 kN, 5 kN and Zero

22. A beam ABC is simply supported at A and B, BC is overhanging. Span AB = 8 m, BC = 2 m. Point 'D' is situated at 3 m from A. Using an influence line diagram or otherwise, find the maximum ordinates at 'D' of the influence line diagram for shear at 'D'.

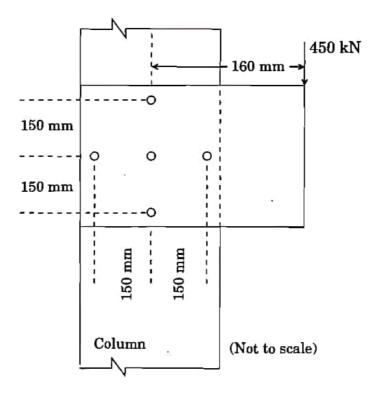
- (1) 0.375
- (2) 0.625
- (3) + 0.625
- (4) + 1.875

23. For compression members with double angle section, unequal angles are preferred to equal angles because

- (1) they are easy for connection
- (2) they lead to large value of minimum radius of gyration
- (3) they have lesser effective length
- (4) of saving in gusset plate material

24. Minimum pitch for riveted connections should not be less than

- (1) 1.5 times the hole diameter
- (2) 2.5 times the hole diameter
- (3) 1.5 times the nominal diameter of rivet
- (4) 2.5 times the nominal diameter of rivet


कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- The effective slenderness ratio of a battened column, λ_e , is taken as 1.10 times the 25. actual slenderness ratio of the column to account for
 - Axial deformation (1)

Bending deformation (2)

Shear deformation (3)

- All of the above (4)
- 26. The maximum design force for a rivet in the following bracket connection, if spacing between adjacent rivets is 150 mm, is

(1)150 kN (2)175 kN

 $200 \, \mathrm{kN}$

- (4)212.5 kN
- 27. The minimum thickness of a base plate, t_s in case of slab base can be calculated by the formula
 - (1) $t_s = \sqrt{2.5 w (b^2 0.3a^2) f_y / \gamma_{m_0}}$ (2) $t_s = \sqrt{2.5 w (b^2 0.3b^2) \gamma_{m_0} / f_y}$
 - (3) $t_s = \sqrt{2.5 \text{ w} (a^2 0.3b^2) \gamma_{m_0} / f_y}$ (4) $t_s = \sqrt{2.5 \text{ w} (a^2 0.3b^2) f_y / \gamma_{m_0}}$

28. The top chord of a roof truss is inclined at an angle of 20°, no access is provided for maintenance. The live load to be considered for the design will be

(1) Zero

(2) 0.4 kN/m²

(3) 0.75 kN/m^2

(4) 0.55 kN/m^2

29. If a structure is under fatigue stresses, then the welded joints as compared to riveted joints will fail

(1) Earlier

(2) Later

(3) At the same time

(4) Not at all

30. According to IS 800 : 2007, allowable vertical deflection for gantry girder with crane load (electronically operated up to 50 tons) is

 $\frac{\text{span}}{500}$

 $(2) \quad \frac{\text{span}}{750}$

 $(3) \quad \frac{\text{span}}{1000}$

 $(4) \quad \frac{\text{span}}{300}$

31. The design bending strength of a laterally supported beam is given by $M_d = (\beta_b.Z_p.f_y)/\gamma_{m_0}, \text{ where } \beta_b, Z_p, f_y \text{ and } \gamma_{m_0} \text{ have their usual meaning. } \beta_b \text{ for plastic and compact sections are given by}$

(1) 1.0, 0.8

(2) 0.8, 1.0

(3) $1, Z_e/Z_p$

(4) 1, 1

32. The deep structural members subjected to transverse loads are called

(1) Beams

(2) Columns

(3) Plate girders

(4) Trusses

33. The optimum thickness of web, tw, of a plate girder is given by

(1) $t_{w} = \left(\frac{M_{z}}{f_{y}.k^{2}}\right)^{0.3}$

(2) $t_{\mathbf{w}} = \left(\frac{\mathbf{f}_{\mathbf{y}}.\mathbf{k}^2}{\mathbf{M}_{\mathbf{z}}}\right)^{0.33}$

 $(3) t_{\mathbf{w}} = \left(\frac{\mathbf{M}_{\mathbf{z}}}{\mathbf{f}_{\mathbf{v}} \cdot \mathbf{k}^2}\right)$

 $(4) \quad t_{\mathbf{w}} = \left(\frac{f_{\mathbf{y}}.\mathbf{k}^{2}}{\mathbf{M}_{\mathbf{z}}}\right)$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- 34. In a singly reinforced balanced section, if M 30 concrete and Fe 415 steel is used, then the value of neutral axis factor (ku_{max}) in L.S.M. is
 - (1) 0.42

(2) 0.46

(3) 0.48

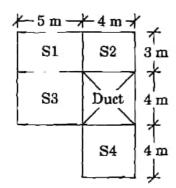
- (4) 0.52
- 35. The maximum area of tension steel in a beam shall not exceed
 - (1) 0·15 bD

(2) 0·12 bD

(3) 0.04 bD

- (4) 1.00 bD
- 36. Effective flange width of a continuous T-beam is
 - (1) $b_f = \frac{l_0}{6} + b_w + 6 D_f$
- (2) $b_f = \frac{l_0}{12} + b_w + 3 D_f$

(3) $b_f = \frac{l_0}{\frac{l_0}{b} + 4} + b_w$


- (4) $b_f = \frac{0.5 l_0}{\frac{l_0}{6} + 4} + b_w$
- 37. The maximum spacing of shear reinforcement measured along the axis of the member shall **not** exceed _____ for the vertical stirrups, where 'd' is the effective depth of the section.
 - (1) 0·5 d

(2) 0·7 d

(3) 0.75 d

- (4) 0.65 d
- 38. Determine the minimum and maximum longitudinal reinforcement for a square column of size 300 mm × 300 mm having a clear cover of 25 mm.
 - (1) 500 mm² and 3750 mm²
 - (2) 500 mm² and 5400 mm²
 - (3) 720 mm² and 3750 mm²
 - (4) 720 mm² and 5400 mm²

39. Match the end conditions for restrained slab panels:

- S1a.
- I. Four edges continuous
- S2b.
- II. One long edge continuous
- S3C.
- III. Two adjacent edges discontinuous
- d. **S4**
- Four edges discontinuous
- V. One short edge continuous

Select the correct response.

	а	b	C	d
(1)	IV	II	v	I
(2)	II	v	I	IV
(3)	Ш	v	II	IV
(4)	TTT	TV	II	v

- 40. For a simply supported beam of span 12 m, the basic value of span to effective depth ratio is
 - (1) 20
- (2)26
- (3)65/3
- (4) 50/3
- Match the conditions under which the given type of footing is used: 41.
 - Combined footing a.
- For two or more columns I.
- Mat foundation b.
- П. For isolated or group of columns
- Pile foundation c.
- III. For individual column
- Isolated footing d.

- For supporting all columns of structure IV.

Select the correct response.

	a	b	C	d
(1)	II	\mathbf{III}	IV	I
(2)	1	IV	11	III
(3)	\mathbf{II}	I	III	IV
(4)	II	IV	I	III

42.	The	height of a retaining wall is 5.5 m.	. It is to	be designed as
	(1)	Cantilever type	(2)	Counterfort type
	(3)	Cantilever or counterfort type	(4)	None of the above
43.	A sh	near key is provided in a retaining	wall to a	void
	(1)	Sliding	(2)	Overturning
	(3)	Buckling	(4)	Bending
44.	The	imposed floor load acting on stair	case for	residential and educational buildings
	is to	be considered as		
	(1)	2.0 kN/m^2 and 3.0 kN/m^2	(2)	$3\cdot0~\mathrm{kN/m^2}$ and $2\cdot0~\mathrm{kN/m^2}$
	(3)	$4\cdot0$ kN/m ² and $3\cdot0$ kN/m ²	(4)	3.0 kN/m^2 and 4.0 kN/m^2
45.		extreme stress at the top and bott placed along the longitudinal axis		es of a prestressed beam when tendons
	(1)	$\frac{P}{A} \pm \frac{M}{Z}$	(2)	$\frac{P}{Z} \pm \frac{M}{A}$
	(9)	$\frac{P}{A} \pm \frac{M}{T}$	(4)	$\frac{P}{T} \pm \frac{M}{\Delta}$
	(3)	$\overline{A}^{\pm}\overline{I}$	(4)	$\overline{I} \stackrel{\perp}{A}$
46.	dist mid	ributed live load over its entire	span, s centrici	oncrete beam is subjected to uniformly uch that the resulting stress at the ty at that section is d/6 below the C.G., he thrust line at that section is
	(1)	At C.G.	(2)	d/6 above C.G.
	(3)	d/6 below C.G.	(4)	d/3 below C.G.
47.	cabl at ti loss	le with eccentricity of 15 mm above he midspan. The beam is tensioned	e C.G. at d from o	ete beam is prestressed by a parabolic t both supports and 45 mm below C.G. ne end. In the estimation of maximum ulative angle turned by the parabolic
	(1)	0.01 radians	(2)	0·1 radians
	(3)	0·15 radians	(4)	0.02 radians

48. In a pre-tensioned prestressed concrete cross-section,

Statement 1:

The stress in wires is assumed to be zero at the end supports and increases to its final maximum value over its transmission length.

Statement 2:

The bond stress between concrete and prestressed wires is maximum near the end supports and decreases to nearly zero over its transmission length.

- (1) Statements 1 and 2 are true
- (2) Statement 1 is true and statement 2 is false
- (3) Statement 1 is false and statement 2 is true
- (4) Statements 1 and 2 are false

49. To avoid sudden collapse just after a shear crack, minimum shear reinforcement is provided in prestressed concrete member in the form of stirrups. IS 1343 suggested the relation as

(1)
$$\frac{A_{sv}}{b.s_v} = \frac{0.4}{0.87} \frac{d}{f_v}$$

(2)
$$\frac{A_{sv}}{bd.s_{v}} = \frac{0.4}{0.87} \times f_{y}$$

(3)
$$\frac{A_{sv}}{b.s_v} = \frac{0.4}{0.87 f_v}$$

(4)
$$\frac{A_{sv}}{b \cdot s_v} = \frac{0.4 f_{ck}}{0.87 f_v}$$

50. What is the maximum possible eccentricity in a prestressed concrete beam of circular cross-section? Diameter of the section is d. Tension is not allowed anywhere and any time in the cross-section. Neglect dead load (self-weight).

(1) d/8

(2) d/6

(3) d/4

(4) d/3

51.	What will be the maximum possible uniformly distributed load (inclusive of
	self-weight) over the entire span of a simply supported beam of span 'L' such that the
	deflection at midspan at service condition is zero? The cross-section is rectangular.
	The prestressing force 'P' is applied with uniform eccentricity 'e'. Assume no losses.

 $(1) \quad \frac{8\text{Pe}}{\text{L}^2}$

 $(2) \quad \frac{8.8 \text{Pe}}{\text{L}^2}$

 $(3) \quad \frac{9.6 \text{Pe}}{\text{L}^2}$

 $(4) \quad \frac{10.4 \text{Pe}}{\text{L}^2}$

52. The loss due to creep in prestressed concrete shall be determined considering

- (1) All loads and prestressing force
 - (2) Live loads and prestressing force
 - (3) Permanent loads and prestressing force
 - (4) Permanent loads only

53. The limit state of collapse for prestressed concrete is

- (1) Limit state of collapse: Deflection
- (2) Limit state of collapse: Cracking
- (3) Limit state of collapse: Maximum compression
- (4) None of the above

54. The designed prestressed concrete element should satisfy the limits specified for permissible stresses at transfer stage as well as service condition. The prestressing force 'P' and eccentricity 'e' evaluated from those limits are

- (1) Maximum value of 'P' and maximum value of 'e'
- (2) Maximum value of 'P' and minimum value of 'e'
- (3) Minimum value of 'P' and maximum value of 'e'
- (4) Minimum value of 'P' and minimum value of 'e'

55. During tensioning of prestressing tendons the breakage of wires in any one prestressed concrete member shall **not** exceed

- (1) 2.5%
- (2) 7.5%
- (3) 10%
- (4) 12.5%

56.	Who is known as the Father of Scientific Management?					
	(1)	Robert Owen				
	(2)	Elton Mayo				
	(3)	F.W. Taylor				
	(4)	Henry Fayol				
57.	ABO	C analysis is referred to as				
	(1)	Always Better Control analysis				
	(2)	Alphabetical Backup Control analysis				
	(3)	Analytical Boost Crane analysis				
	(4)	None of the above				
58.	such	caled drawing of the proposed construction site showing all the relevant features as entry and exit points to the site, storage area for materials, toilets, workers rters, etc. is called				
	(1)	Construction Plan				
	(2)	Job Layout				
	(3)	Development Plan				
	(4)	Architectural Plan				
59.		event or events that immediately come before another event without any rvening events are called events to that event.				
	(1)	Successor				
	(2)	Dummy				
	(3)	Predecessor				
	(4)	Slack				
60.	Whi	ch rule is used for numbering the events in a network, scientifically?				
	(1)	Stevenson's rule				
	(2)	Jackson's rule				
	(3)	Fulkerson's rule				
	(4)	Watson's rule				
कच्चा	कामार	गठी जागा / SPACE FOR ROUGH WORK				

61.	The cost inflow a firm receives if a machine still has value at the time of its disposal is known as							
		nown as Salvage value						
	(1) (2)	Purchase expenses						
	(3)	Operating cost						
	(4)	Ownership cost						
62.	Will	liams-Steiger Occupational Safe	ety and He	alth Act (OSH Ac	t) was passed in the			
	(1)	1968	(2)	1970				
	(3)	1974	(4)	1972	**			
63.	Coe	efficient of traction for a crawler	tractor is u	pto				
	(1)	0.9	(2)	0.6				
	(3)	1.2	(4)	1.0				
64.	Whi	ich of the following is a "Class-A	a" item in A	BC analysis?				
	(1)	Items with low cost but large	in number					
	(2)	Items with average cost but n	oderate in	number				
	(3)	Items with high cost but few i	n number					
	(4)	Items with high cost but large	in number					
65.	Wh	ich of the following best defines	"Negative S	Stock" ?				
	(1)	Project ahead of schedule						
	(2)	Project on schedule						
	(3)	Project behind schedule						
	(4)	None of the above						
66.	Qua	ality circles in the construction i	ndustry car	have the followin	g participants :			
	(1)	Engineers and architects						
	(2)	Contractors and raw material	suppliers		*			
	(3)	Clients and consultants						
	(4)	All of the above						
कच्च्य	ा कामार	साठी जागा / SPACE FOR ROUGH W	ORK		P.T.O.			

67. After solving the system

$$2x_1 + 4x_2 - 6x_3 = -8,$$

$$x_1 + 3x_2 + x_3 = 10$$
, and

$$2x_1 - 4x_2 - 2x_3 = -12$$

using Gauss-Jordan method, the values of x_1 , x_2 and x_3 are

(1) (1, 2, 3)

(2) (1, 3, 2)

(3) (3, 2, 1)

(4) (3, 1, 2)

68. The solution of the equations

$$5x_1 + x_2 + x_3 + x_4 = 4$$

$$x_1 + 7x_2 + x_3 + x_4 = 12$$

$$x_1 + x_2 + 6x_3 + x_4 = -5$$

$$x_1 + x_2 + x_3 + 4x_4 = -6$$

by Gauss-Jordan method is

(1) -1, -2, 1, 2

(2) -1, -2, -1, 2

(3) -1, 2, -1, 2

(4) 1, 2, -1, -2

69. To find the root of f(x) = 0 by using the bisection method, an iteration is begun with the lower and upper guesses of the root. If x_{lower} and x_{upper} are the roots, then at the end of the iteration, the absolute relative approximate error in the estimated value of the root would be

 $(1) \quad \frac{x_{upper}}{x_{upper} + x_{lower}}$

 $\frac{x_{lower}}{x_{upper} + x_{lower}}$

 $(3) \quad \frac{x_{upper} - x_{lower}}{x_{upper} + x_{lower}}$

 $(4) \quad \frac{x_{upper} + x_{lower}}{x_{upper} - x_{lower}}$

70. With initial approximation of $x_1 = x_2 = x_3 = 0$, what is the next value of x_1 in the following set of simultaneous equations?

$$27x_1 + 6x_2 - x_3 = 81$$

$$6x_1 + 15x_2 + 2x_3 = 75$$

$$x_1 + x_2 + 50x_3 = 110$$

(1) 2.25

(2) 3.0

(3) 3·25

(4) 4.0

71. Match the following:

- a. Newton-Raphson method
- I. f(x) is a linear function of 'x'
- b. Simpson's 1/3rd rule
- II. The number of intervals must be even
- c. Trapezoidal rule
- III. Diagonal matrix
- d. Gauss Elimination
- IV. Solution of algebraic and transcendental equations
- e. Gauss-Jordan method V.
- Forward elimination and Backward substitution

Select the correct response.

- a b c d
- (1) I II III IV V
- (2) II III I V IV
- (3) III I II V IV
- (4) IV II I V III

- 72. The procedure adopted in the Gauss-Jordan method in solving linear simultaneous equations is
 - (1) It is required to assume initial approximate values of the variables.
 - (2) It reduces the given system of equations to a diagonal matrix.
 - (3) It reduces the given system of equations to an equivalent triangular system.
 - (4) The given matrix is factored into lower and upper triangular matrices.
- 73. The solution by Gauss-Jordan method for the following equations

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

is

(1)
$$x = 1, y = 2, z = 5$$

(2)
$$x = 1, y = 3, z = 5$$

(3)
$$x = 2, y = 1, z = 3$$

- (4) x = 1, y = 3, z = 2
- 74. The Newton-Raphson method is said to have
 - (1) Linear convergence
 - (2) Superlinear convergence
 - (3) Quadratic convergence
 - (4) Oscillatory convergence

- 75. Back substitution is required in the following method(s) in the solution of linear simultaneous equations:
 - (1) Gauss-Elimination method
 - (2) Gauss-Jordan method
 - (3) Iterative method
 - (4) All of the above
- 76. The following data is given for the velocity of a body as a function of time. It is required to find the velocity at t = 21 sec. For the purpose a quadratic polynomial $v(t) = at^2 + bt + c$ is to be used. The velocity profile is given as

t in sec	0	13	14	15	18	20	22	24
v(t) in m/s	0	225	248.5	316-6	517:35	535.35	570	589.5

The correct set of equations that will find a, b and c is

(1)
$$\begin{bmatrix} 169 & 13 & 1 \\ 225 & 15 & 1 \\ 324 & 18 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 248.5 \\ 316.6 \\ 517.35 \end{bmatrix}$$
 (2)

(2)
$$\begin{bmatrix} 176 & 14 & 1 \\ 225 & 15 & 1 \\ 400 & 20 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 248.5 \\ 316.6 \\ 535.35 \end{bmatrix}$$

(3)
$$\begin{bmatrix} 169 & 13 & 1 \\ 196 & 14 & 1 \\ 225 & 15 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 225 \\ 248.5 \\ 316.6 \end{bmatrix}$$

(4)
$$\begin{bmatrix} 324 & 18 & 1 \\ 484 & 22 & 1 \\ 225 & 15 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 517.35 \\ 589.50 \\ 316.6 \end{bmatrix}$$

- 77. During the determination of roots of equations $x^2 + 2xy = 6$ and $x^2 y^2 = 3$ using the Newton-Raphson method, the value of Jacobian matrix 'D' is found to be
 - (1) -4
 - (2) 8
 - (3) 12
 - (4) + 4

78.	Wha	at is the minimum crushing strength	of G	ranite used in India?
	(1)	200 N/mm ²	(2)	100 N/mm ²
	(3)	50 N/mm ²	(4)	250 N/mm ²
79.	Whi	ich of the following is <i>not</i> a test for me	easu	ring the workability of concrete?
	(1)	Slump Test	(2)	Flow Test
	(3)	Le Chatelier's Test	(4)	Compaction Factor Test
80.		ich of the following is a field test	for	measuring the consistency of plastic
	(1)	Le Chatelier's Test	(2)	Compaction Factor Test
	(3)	Elongation Index Test	(4)	Kelly Ball Test
81.	In v	which type of bond is cavity existing?		
	(1)	Flemish bond	(2)	English bond
	(3)	Rat-trap bond	(4)	Stretcher bond
82.	`Whi	ich of the following is a method of med	hani	cal ventilation ?
	(1)	Plenum System	(2)	Bleeding System
	(3)	Segregation System	(4)	Natural Ventilation System
83.	Gyp	sum is added to Portland cement dur	ing i	ts manufacturing so that it may
	(1)	Accelerate the setting time		
	(2)	Retard the setting time		
	(3)	Decrease the burning temperature		
	(4)	Facilitate grinding		
84.	Prin	nciples of planning for buildings inclu	de	
	a.	Aspect and Prospect	b.	Roominess
	c.	Grouping	d.	Flexibility and Privacy
	Ans	swer options :		
	(1)	a and b only	(2)	b and d only
	(3)	a and c only	(4)	a, b, c and d
		<u> </u>		

- 85. Timber can be made reasonably fire-resistant by
 - (1) Soaking it in Ammoniam Sulphate
 - (2) Coating it with Tar paint
 - (3) Pumping creosote oil into timber under high pressure
 - (4) Seasoning process
- 86. Which of the following is not a non-destructive test?
 - (1) Rebound Hammer Test
 - (2) Surface Hardness Test
 - (3) Ultrasonic Pulse Velocity Test
 - (4) Soundness Test
- 87. Which is the major constituent of ordinary Portland cement?
 - (1) CaO
- (2) MgO
- (3) SO₃
- (4) Fe₂O₃
- 88. Which is an example of cased cast-in-situ concrete pile?
 - (1) Raymond pile

(2) Watson pile

(3) Reynold pile

- (4) Boston pile
- 89. As per building bye-laws, for fixing up the height of a building, which rule is generally used?
 - (1) $63\frac{1}{2}^{\circ}$ Rule

(2) $37\frac{2}{3}^{\circ}$ Rule

(3) $65\frac{1}{2}$ ° Rule

- (4) 45° Rule
- 90. The stress developed due to external force in an elastic material
 - (1) Depends on elastic constant
 - (2) Does not depend on elastic constant
 - (3) Depends partially on elastic constant
 - Depends on limit of proportionality

91.	The Modulus of Elasticity in terms of Bulk Modulus and Modulus	of Rigidity is
-----	--	----------------

- $(1) \quad \frac{9KG}{3K + G}$
- $(2) \quad \frac{9KG}{K + 3G}$
- $(3) \quad \frac{3K + G}{9KG}$
- $(4) \quad \frac{K + 3G}{9KG}$

92. In case of biaxial stresses, the maximum value of shear stress is

- (1) Difference of normal stresses
- (2) Half the difference of normal stresses
- (3) Sum of normal stresses
- (4) Half the sum of normal stresses
- 93. If a solid circular shaft is simultaneously subjected to a torque "T" and a bending moment 'M', the ratio of maximum bending stress and maximum torsional shearing stress is given by
 - (1) M/T

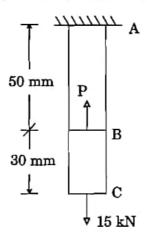
(2) T/M

(3) 2M/T

- (4) 2T/M
- 94. The slenderness ratio of a vertical column of square cross-section of 2.5 cm sides and 300 cm effective length, is
 - (1) 200

(2) 360

(3) 240


- (4) 416
- 95. Columns of given length, cross-section and material have different values of buckling loads for different end conditions. The strongest column is one whose
 - (1) one end is fixed and the other end is hinged
 - (2) both the ends are hinged or pin-jointed
 - (3) one end is fixed and the other entirely free
 - (4) both the ends are fixed
- 96. A circular shaft was initially subjected to bending moment and then was subjected to torsion. If the magnitude of bending moment is found to be the same as that of the torque, then the ratio of maximum bending stress to shear stress would be
 - (1) 0.25

(2) 0.50

(3) 2·**0**

 $(4) \quad 4.0$

97. A steel bar ABC of uniform cross-section 100 mm 2 is suspended vertically and loaded as shown in the figure. If the lower end of bar C does not move when loads are applied (neglect self-weight), then the value of force P is ($E_s = 200 \text{ kN/mm}^2$)

- (1) 24 kN
- (2) 42 kN
- (3) 36 kN
- (4) 15 kN

98. Principal stresses at a point in a plane stressed element are $\sigma_x = \sigma_y = 500 \text{ N/mm}^2$. Normal stress on the plane inclined at 45° to the x-axis will be

(1) Zero

(2) 500 N/mm²

(3) 1000 N/mm²

(4) 707 N/mm²

99. The Euler's crippling load for a 2 m long slender steel rod of uniform cross-section hinged at both the ends is 1 kN. The Euler's crippling load for a 1 m long steel rod of the same cross-section and hinged at both the ends will be

(1) 0·25 kN

(2) 0.5 kN

(3) 2 kN

(4) 4 kN

100. A solid shaft of diameter 'D' carries a twisting moment that develops maximum shear stress. If the shaft is replaced by a hollow one of outside diameter 'D' and inside diameter $\frac{'D'}{2}$, then the maximum shear stress will be

(1) 1.067τ

(2) 1·143 τ

(3) 1·33 τ

(4) 2 τ

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2017 परीक्षेचा दिनांक : 17 डिसेंबर, 2017

विषय: प्रश्नपत्रिका क्र.1 (स्थापत्य अभियांत्रिकी पेपर - 1)

महाराष्ट्र लोकसेवा आयोगातफँ घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2017 या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्यावाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे				
क्रमांक	संच \Lambda	संच B	संच C	संच D	
1	3	3	3	1	
2	4	3	1	4	
3	#	1	2	3	
4	3	3	3	2	
5	1	4	3	4	
6	2	3	1	2	
7	3	4	2	2	
8	1	2	1	3	
9	3	1	3	1	
10	2	1	3	3	
11	3	4	4	3	
12	2	1	1	2	
13	3	2	4	3	
14	2	2	3	4	
15	4	1	2	3	
16	2	3	4	1	
17	2	1	2	2	
18	1	3	2	4	
19	2	3	3	1	
20	4	4	1	4	
21	#	3	3	1	
22	3	1	3	1	
23	2	3	2	1	
24	4	1	3	2	
25	3	2	4	1	

T - KEY प्रश्न	Г	77	तरे			
क्रमांक	संच A संच B संच C संच D					
26	1	3	3	2		
27	3	3	1	3		
28	4	1	2	4		
29	2	2	4	4		
30	2	1	1	3		
31	4	3	4	1		
32	3	3	1	2		
33	1	4	1	4		
34	3	1	1	1		
35	3	4	2	3		
36	1	3	1	4		
37	3	2	2	#		
38	4	4	3	3		
39	3	2	4	1		
40	4	2	4	2		
41	2	3	3	3		
42	1	1	1	1		
43	1	3	2	3		
44	4	3	4	2		
45	1	2	1	3		
46	2	3	3	2		
47	2	4	4	3		
48	1	3	#	2		
49	3	1	3	4		
50	1	2	1	2		

Date: 28th March, 2018

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र.**१ (स्थापत्य अभियांत्रिकी पेपर - I)**

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
51	3	4	2	2	
52	3	1	3	1	
53	4	4	1	2	
54	3	1	3	4	
55	1	1	2	#	
56	3	1	3	3	
57	1	2	2	2	
58	2	1	3	4	
59	3	2	2	3	
60	3	3	4	1	
61	1	4	2	3	
62	2	4	2	4	
63	1	3	1	2	
64	3	1	2	2	
65	3	2	4	4	
66	4	4	#	3	
67	1	1	3	1	
68	4	3	2	3	
69	3	4	4	3	
70	2	#	3	1	
71	4	3	1	3	
72	2	1	3	4	
73	2	2	4	3	
74	3	3	2	4	
75	1	1	2	2	

प्रश्न		उत्तरे		
क्रमांक	संच A	संच B	संच C	संच D
76	3	3	4	1,
77	3	2	3	1
78	2	3	1	4
79	3	2	3	1
80	4	3	3	2
81	3	2	1	2
82	1	4	3	1
83	2	2	4	3
84	4	2	3	1
85	1	1	4	3
86	4	2	2	3
87	1	4	1	4
88	1	#	1	3
89	1	3	4	1
90	2	2	1	3
91	1	4	2	1
92	2	3	2	2
93	3	1	1	3
94	4	3	3	3
95	4	4	1	1
96	3	2	3	2
97	1	2	3	1
98	2	4	4	3
99	4	3	3	3
100	1	1	1	4

Date: 28th March, 2018

2

#ने दर्शविलेले प्रश्न रह करण्यात आलेले आहेत.

महाराष्ट्र अभिग्नेतिकी सेवा (स्थापत्य) (मुथ्ब) प -२०17

हि 17 डिसेंबर ,2017 प्रश्नपुस्तिका क्रमांक

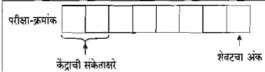
BOOKLET No.

प्रश्नपुस्तिका-II

संचक्र.

R10

स्थापत्य अभियांत्रिकी पेपर - 2


एकूण प्रश्न : 100

एकूण गुण : 200

वेळ: 2 (दोन) तास

सूचना

- सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलूंन घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीढ

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपृस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपृस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपृस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल

पुढील प्रश्नपुस्तिकेच्या अंतिम G C C L

मील 10 सूचनेविना पर्यवेक्षकांच्या

- 1. The dimensions of dynamic viscosity are
 - $(1) \quad L^2/T$

(2) M/LT

(3) MT/L

- (4) T/L^2
- 2. If the velocity potential function $\phi = 5 (x^2 y^2)$, the velocity components at the points (4, 5) will be
 - (1) u = -35, v = 40
 - (2) u = -40, v = 55
 - (3) u = -40, v = 50
 - (4) u = 40, v = -50
- 3. Printer's ink is an example of
 - (1) Newtonian fluid
 - (2) Non-Newtonian fluid
 - (3) Thixotropic substance
 - (4) Elastic solid
- 4. Dynamic Viscosity of a gas
 - Increases as temperature decreases
 - (2) Increases as temperature increases
 - (3) Is independent of temperature
 - (4) May increase or decrease with increase in temperature, depending on the nature of gas
- 5. According to Froude's model law

$$(1) \quad \frac{V_p \times L_p}{v_p} = \frac{V_m \times L_m}{v_m}$$

$$(2) \quad \frac{V_{\rm m}}{\sqrt{g_{\rm m}L_{\rm m}}} = \frac{V_{\rm p}}{\sqrt{g_{\rm p}L_{\rm p}}}$$

$$(3) \quad \frac{V_{\rm m}}{\sqrt{p_{\rm m}}} = \frac{V_{\rm p}}{\sqrt{p_{\rm p}}}$$

(4)
$$\frac{V_m}{\sqrt{\sigma_m}/\rho_m L_m} = \frac{V_p}{\sqrt{\sigma_p}/\rho_p L_p}$$

- 6. For a hydrostatic pressure measurement in fluids at rest,
 - (1) The shear stress depends upon the coefficient of viscosity
 - (2) The shear stress is maximum on a plane inclined 45° to horizontal
 - (3) The shear stress is zero
 - (4) The shear stress is zero only on horizontal plane
- 7. If in a flow field $\frac{p}{\gamma} + \frac{v^2}{2g} + z = \text{constant between any two points, flow must be}$
 - (1) Steady, compressible and irrotational
 - (2) Unsteady, incompressible and irrotational
 - (3) Steady, incompressible and irrotational
 - (4) Steady, compressible and along a stream line
- 8. For a centrifugal pump, suction lift head is the
 - (1) Vertical distance between the top surface of liquid level in the discharge tank and pump centre line
 - (2) Vertical distance between free surface of liquid level in the sump and pump centre line
 - (3) Head for overcoming friction loss in the suction pipe, entry loss at entrance to the friction pipe and running fluid in the suction pipe
 - (4) None of the above
- 9. The centre of buoyancy of a submerged body
 - (1) Coincides with the centre of gravity of the body
 - (2) Coincides with the centroid of the displaced volume of the fluid
 - (3) Is always below the centre of gravity of the body
 - (4) Is always above the centroid of the displaced volume of the liquid

10. What is the range of the speed ratio for a Francis Turbine?

(1) 0.10 to 0.30

(2) 0.60 to 0.90

(3) 0.85 to 0.90

(4) 1.40 to 2.25

11. For high head, the suitable turbine is

(1) Pelton

(2) Francis

(3) Kaplan

(4) None of the above

12. The discharge through a single-acting reciprocating pump is

(1) $Q = \frac{ALN}{60}$

 $(2) \quad Q = \frac{2 \text{ ALN}}{60}$

(3) Q = ALN

(4) Q = 2 ALN

13. The specific speed (N_s) of a pump is given by the expression

 $(1) \quad N_s = \frac{N\sqrt{Q}}{H_m^{5/4}}$

 $(2) \quad N_s = \frac{N\sqrt{P}}{H_m^{3/4}}$

 $(3) \quad N_s = \frac{N\sqrt{Q}}{H_m^{3/4}}$

(4) $N_s = \frac{N\sqrt{P}}{H_m^{5/4}}$

14. Jet ratio (m) is defined as the ratio of

- (1) Diameter of the jet of water to diameter of the Pelton wheel
- (2) Velocity of vane to velocity of the jet of water
- (3) Velocity of flow to velocity of the jet of water
- (4) Diameter of Pelton wheel to diameter of the jet of water

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

		raph between the pressure head in the cylinder and the distance travelled by the on from inner dead centre for one complete revolution of crank in known as							
	(1)	Slip diagram							
	(2)	Crank diagram							
	(3)	Polar diagram							
	(4)	Indicator diagram							
16.	A tu	arbine is called impulse if at the inlet of the turbine							
	(1)	Total energy is only kinetic energy							
	(2)	Total energy is only pressure energy							
	(3)	Total energy is the sum of kinetic energy and pressure energy							
	(4)	None of the above							
17.	Which of the following statements is correct?								
	(1)	Curves at constant speed are called main characteristics curves.							
	(2)	Curves at constant head are called main characteristic curves.							
	(3)	Curves at constant efficiency are called operating characteristic curves.							
	(4)	Curves at constant efficiency are called main characteristic curves.							
18.	The	manometer head (H_m) of a centrifugal pump is given by							
	(1)	Pressure head at outlet of pump - pressure head at inlet							
	(2)	Total head at inlet – total head at outlet							
	(3)	Total head at outlet – total head at inlet							
	(4)	Nana of the above							

19.	The	Goodrich method is used for		•,							
	(1)	Determining reservoir capacity									
	(2)	Flood routing									
	(3)	Reservoir sediment evaluation									
	(4)	Trap efficiency									
20.		e extent by which the inflow hydr rage can be computed by a process kn	-	n gets modified due to the reservoir							
	(1)	River routing	(2)	Channel routing							
	(3)	S hydrograph	(4)	Flood routing or reservoir routing							
21.	A permeable stratum which is capable of yielding appreciable quantities of groundwater under gravity is known a/an										
	(1)	Well	(2)	Artesian well							
	(3)	Aquifer	(4)	Aquiclude							
22.		routing a flood through a reach, the rographs coincides with the peak of o In all cases of flood routing In channel routing only In all cases of reservoir routing When the inflow is into a reservoir	outflov								
23.		volume of groundwater extracted l ring material is known as	by gra	vity drainage from a saturated water							
6 22	(1)	Field capacity	(2)	Specific retention							
	(3)	Specific capacity	(4)	Yield							
24.		distance from the centre of a pump or is inappreciable, is known as	ed we	ll to the point, where the drawdown is							
	(1)	Drawdown									
	(2)	Cone of pressure		¥							
	(3)	Radius of influence									
	(4)	Piezometric surface									
कच्च्य	कामार	नाठी जागा / SPACE FOR ROUGH WORK		P.T.O.							

25.

(2) Efficiency of a well

The well yield per unit drawdown is known as

(1) Specific capacity of a well

	(3)	Retention	of a well		(4	()	Well loss						
26.	If w	vithin a zon	ne of satu	ration, a	n impervi	ou	s deposit bel	low a p	ervious	deposit is			
26. 27. 28. 30.		nd to suppor nown as	rt a body	of satura	ted mater	ial	, then this bo	ody of s	aturate	d material			
	(1)	Flowing w	ell		(2	3)	Aquiclude						
	(3)	Artesian a	quifer		(4	(1	Perched aqu	aife r	¥.				
27. 28. 29.	If S	y = Specific	yield and	S _r = Spec	ific retent	ioi	n, then						
	(1)	$S_y + S_r = 0$	0.50		. (2	3)	$S_y + S_r = Po$	orosity					
	(3)	$S_y + S_r = 1$	1.0		(4	Į)	$S_y + S_r = Pe$	ermeabi	lity				
28.		is an example of a non-rigid dam.											
	(1)	Arch dam			(2	2)	Timber dam	1					
	(3)	Steel dam			(4	()	Rockfill dan	n					
29.	'Bank storage' in a dam reservoir												
	(1)	Decreases	the comp	uted rese	rvoir capa	cit	y						
	(2)	Increases	the comp	ited resei	rvoir capa	cit	у						
	(3)	(3) Sometimes decreases and sometimes increases the computed reservoir capacity											
	(4)	Has no eff	ect on res	ervoir cap	pacity								
27. 28. 30.	In c	In case of gravity dams, the factor of safety against over turning should not be less											
	(1)	1.00	(2)	1.10	(3	3)	1.25	(4)	1.50				
31.	Sha	rper crest o	f an ogee a	spillway		_							
	(1)	Increases	the value	of coeffic	ient of dis	cha	arge						
	(2)	Decreases	the effect	ive head									
	(3)	Increases	stability o	of crest du	ie to hydr	ost	atic pressure	}					
	(4)	Has no eff		. ana af +1	b								

(1) Gravity drainage has ceased (2) Permanent wilting point is reached (3) The soil becomes completely saturated (4) Capillary fringe reaches the root zone of the plants 33. Seepage failure of earth-filled dam is due to (1) Toe erosion (2) Wave erosion (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall (3) Head regulator (4) None of the above													
(3) The soil becomes completely saturated (4) Capillary fringe reaches the root zone of the plants 33. Seepage failure of earth-filled dam is due to (1) Toe erosion (2) Wave erosion (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall													
 (4) Capillary fringe reaches the root zone of the plants 33. Seepage failure of earth-filled dam is due to (1) Toe erosion (2) Wave erosion (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall 	Permanent wilting point is reached												
33. Seepage failure of earth-filled dam is due to (1) Toe erosion (2) Wave erosion (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall	3) The soil becomes completely saturated												
(1) Toe erosion (2) Wave erosion (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall	79												
 (3) Gullying (4) Sloughing 34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall 													
34. Auxiliary devices in stilling basins are provided (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluices main weir? (1) Marginal bund (2) Divide wall													
 (1) To stabilise the flow (2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluice main weir? (1) Marginal bund (2) Divide wall 													
(2) To reduce the length of the basin (3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluices main weir? (1) Marginal bund (2) Divide wall													
(3) As additional measure to control jump (4) All of the above 35. Which of the following structures is constructed to separate under sluices main weir? (1) Marginal bund (2) Divide wall													
 (4) All of the above 35. Which of the following structures is constructed to separate under sluices main weir? (1) Marginal bund (2) Divide wall 													
35. Which of the following structures is constructed to separate under sluices main weir? (1) Marginal bund (2) Divide wall													
main weir? (1) Marginal bund (2) Divide wall													
(3) Head regulator (4) None of the above													
The crest of an emergency spillway is placed													
(1) Below the designed minimum reservoir water level													
(2) At the designed minimum reservoir water level													
(3) At or above the designed minimum reservoir water level													
(4) None of the above	188												
37. The road length of National Highway by Third Road Plan Formulae, in district in India having its area as 13,400 sq.m will be	The road length of National Highway by Third Road Plan Formulae, in a certain district in India having its area as 13,400 sq.m will be												
(1) 134 km (2) 268 km (3) 402 km (4) 1340 l	sm -												
38. For the purpose of measuring the stopping sight distance, IRC had suggested in the stopping sight distance, IRC had suggested in the stopping sight distance.	gested the												
height of eye level of driver and the height of the object above the road surf	-												
(1) 1.5 m and 0.15 m (2) 1.2 m and 0.12 m													
(3) 1·2 m and 0·15 m (4) 1·5 m and 0·12 m													
कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK	P.T.O.												

39.	A vertical summit curve is formed at the intersection of two gradients, + 5% and - 5%. The length of summit curve needed to provide a stopping sight distance of 100 m will be														
	(1)	227		(2)	0 m		(3)	327 m	(4)	197 m					
40.	The	maxi	mum ut	tility sys	tem is	based on t	he co	oncept of							
	(1)	Max	imum u	itility pe	er unit o	cost of roa	d								
	(2)	Max	imum u	itility pe	er unit l	ength of r	oad								
	(3)	Max	imum u	itility pe	er unit p	population	ı								
	(4)	4) None of the above													
41.	Mat	Match the following:													
	a.	Prin	nary sui	rvey	I.	Collect g	Collect general characteristics of an area								
	b.	Мар	study		II.	Improve	men	t in horizonta	al and ve	rtical alignments					
	c.	Real high	lignmen way	it of	III.	Collect p	hysi	cal informati	0n						
	d.	Reco	nnaissa	ance	IV.	Alignme	nt av	oiding valley	s, ponds	or lakes					
		а	b	c	d										
	(1)	I	IV	II	III			* 0	•.:						
	(2)	III	II	IV	I										
	(3)	I	II	IV	III										
	(4)	III	IV	II	\mathbf{I}_{a}			2. ¥		si .					
42.	traf time	fic on	a two l seconds	ane road		ning the c		· · · · · · · · · · · · · · · · · · ·		m/s for two-way 28 and a reaction 73·57 m					
43.	Plai	n, 198 sist of Expr Stat	1 – 200 ressway e Highv	1, the ro s and N vays (SF	oads in ational I) and N	the count Highways Major Dist	ry ur s crict l	•	System	oad Development of road network					
	(4)	All o	of the ab	ove											

44.	The Benkelman Beam Deflection method is used for												
	(1)	Flexible overlay on flexible pavement											
	(2)	Rigid overlay on rigid pavement											
	(3)	Flexible overlay on rigid pavemen	t										
	(4)	Rigid overlay on flexible pavemen	t										
45.	The width of carriageway for various classes of roads standardised by the Indian Road Congress (IRC) for two lanes without raised kerbs is												
	(1)	3⋅75 m											
	(2)	7·00 m											
	(3)	7-50 m											
	(4)	(4) 5·50 m											
46.	The	strength of a bridge is termed as M	IBG load	ding of 1987. MBG refers to									
	(1)	Model Broad Gauge											
	(2)	Modified Broad Gauge											
	(3)	Modified Budget Grant											
	(4)	Main Broad Gauge											
47.	The centrifugal force is assumed to act at a height of above the level the carriageway of the bridge.												
	(1)	1 m	(2)	1·2 m									
	(3)	1.5 m	(4)	1·75 m									
48.		all parts of bridge floors accessib	ole only	to pedestrains and for all footways,									
	(1)	200 kg/m^2	(2)	300 kg/m^2									
	(3)	400 kg/m^2	(4)	500 kg/m^2									
कच्च्य	वामार	ताठी जागा / SPACE FOR ROUGH WORK	(P,T.O.									

49.	loading is adopted on all roads on which permanent bridges and culverts												
	are	constructed.											
	(1)	IRC Class A											
	(2)	IRC Class AA											
	(3)	3) IRC Class B											
	(4)	IRC Class AB	j.•										
50.	According to the criteria recommended by IRC for Girder Bridges, the limiting load should not cause a deflection more than of the span.												
	(1)	1/1000	(2)	1/1200									
	(3)	1/1500	(4)	1/2000									
51.	The	centre-to-centre distance between of a bridge.	any	two adjacent supports is called the									
	(1)	span	(2)	clear span									
	(3)	nominal span	(4)	effective span									
52.	The scour velocity of the stream is the												
	(1)	Average velocity											
	(2)	Maximum velocity at any time during the year											
	(3)	Velocity which can move the particles of bed materials											
	(4)	Velocity at which a highway bridge is liable to be damaged											
53.		The bridge structure having a gross length of 6 m or less between the faces of the abatement or extreme vintage boundaries is known as											
	(1)	Causeway	(2)	Culvert									
	(3)	Short span bridge	(4)	None of the above									
54.	In ca	ase of navigable rivers, the minimum	free	board provided is usually									
	(1)	30 cm to 45 cm											
	(2)	1.2 m to $1.5 m$											
	(3)	2·4 m to 3·0 m											
<u> </u>	(4)	1·0 m	21										
CHE TO	र कामान	ाती जागा । SPACE FOR BOUGH WORK											

- 55. NATM method of tunnelling is suitable for
 - a. Subway construction
 - b. Abnormal geological conditions
 - c. Soils at medium of shallow depth
 - d. Tunnelling large sections in very difficult ground

Answer options:

(1) a and b only

(2) b and d only

(3) a, c and d only

- (4) a, b, c and d
- 56. Which one of the following shapes is suitable for the construction of tunnel in non-cohesive soils?
 - (1) Rectangular

(2) Horse-shoe

(3) Egg-shaped

- (4) Circular
- 57. The tunnels that are made to shortcut minor local obstacles are called
 - (1) Spiral tunnels

(2) Short tunnels

(3) Off-spur tunnels

- (4) Saddle tunnels
- 58. Which among the following is not a part of shield equipment?
 - (1) Gravel tank

(2) Trailing dam

(3) Nipper car

- (4) Chute
- 59. The following operations are generally employed for the Needle Beam Method of tunnelling:
 - A trench jack is placed on the centre line of the needle beam to support the segment.
 - b. A monkey drift is driven for a short distance.
 - Drift is widened sideways and supported by lagging segments.
 - d. The roof of the monkey drift is supported by lagging.
 - e. The needle beam is slowly skidded forward into the monkey drift.

The correct sequence of operations is

(1) c-d-e-a-b

(2) a - b - c - d - e

(3) b-d-e-a-c

(4) b-a-e-d-c

Α

60.	Which of	the	following	is	a	serious	health	issue	in	case	of	workers	involved	in
	tunnelling	g ope	rations?											

(1) Pneumonia

(2) Deafness

(3) Silicosis

(4) Jaundice

61. The amount of fresh air required to maintain ventilation for workers inside the tunnel should be

- (1) $1 5 \text{ m}^3/\text{minute}$
- (2) $6 14 \text{ m}^3/\text{minute}$
- (3) 20 30 m³/minute
- (4) 30 50 m³/minute

62. The method used to control the amount of dust, where use of water while drilling may be impracticable or undesirable is

- (1) Dry system
- (2) Vacuum hood system
- (3) Control system
- (4) Absorption system

63. In compressed air tunnelling, the amount of air required per minute per m² of face area is

(1) $1 \text{ m}^3/\text{min/m}^2$

(2) $6 \text{ m}^3/\text{min/m}^2$

(3) $10 \text{ m}^3/\text{min/m}^2$

(4) 20 m³/min/m²

64. The correct pair showing percentage of total solids in cow-dung and night soil is

Cow-dung

Night Soil

- (1) 1.4 1.8%
- 3 5%
- (2) 1.0 2%
- 2.5 4.5%
- (3) 18 25%
- 11 15%
- (4) 70 80%
- 82 88%

65.	Whi	ch of the following pairs is not correct	tly m	atched?									
	(1)	Dead end system - Hardy-Cross me	thod										
	(2)	Residual pressure at ferrule point in rural area - 5 m											
	(3)	3) Distribution reservoir - Central location											
	(4)	Gridiron system – More number of valves											
66.	Con	sider the following statements pertain	ning 1	to the sources of supply :									
	a.	Groundwater has low organic content and high dissolved oxygen.											
	b.	Lake water at the bottom has silt and bacteria.											
	c.	River water in floods has low dissolved oxygen and colour.											
	Whi	Which of the above statements is/are correct?											
	(1)	a only											
	(2)	b only											
	(3)	c only											
	(4)	a, b and c	*										
67.	As p	As per I.S. 10500, acceptable limit for chlorides in mg/l in drinking water is											
	(1)	100 mg/l	(2)	250 mg/l									
	(3)	500 mg/l	(4)	1500 mg/l									
68.	Acti	Activated sludge process is an											
	(1)	Aerobic attached growth system	1										
	(2)	Anaerobic attached growth system											
	(3)	Anaerobic suspended growth system											
	(4)	Aerobic suspended system											

P.T.O.

R10		16 A										
69.	'If B.O.D. of waste water sample after 5 days incubation at 20°C is 100 mg deoxygenation rate constant at 20°C is 0·1 per day, ultimate B.O.D. will be											
	(1)	$120 \cdot 20 \text{ mg/}l$										
	(2)	146·25 mg/l										
	(3)	200·45 mg/l										
	(4)	225.60 mg/l										
70.		ich one of the following is the purpose of providing surge tank in pipelines sying water?										
	(1)	To store water										
*	(2)	To increase pressure in the pipeline										
	(3)	To store overflowing water										
	(4)	To protect the pipeline against water hammer										
71.	In the activated sludge process, sludge volume index is used to decide											
	(1)	Quality of raw sewage										
	(2)	Quality of final effluent										
	(3)	Recirculation ration of sludge										
	(4)	Rate of aeration										
72.	An is	An appurtenance used to connect high level branch sewer to low level branch sewer is										
	(1)	Mahhole										

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Drop manhole

Inverted siphon

(4) Catch basin

(2)

(3)

73.	The maximum tolerances in overall length of a 20 m and 30 m metric chain should											
		e respectively										
	(1)	± 2 mm, ± 8										
	(2)	70										
	(3)	± 5 mm, ± 8										
	(4)	± 8 mm, ± 5	mm									
74.	Clos	sed contour lir	es with	one or	more hig	her v	alue contou	rs inside i	it represent			
	(1)	A hill			Ļ	(2)	A depressi	on				
	(3)	A cliff				(4)	A valley					
75.	The lines joining points of equal dip are called											
	(1)	Aclinic lines				(2)	Isogonic li	nes				
	(3)	Agonic lines			*	(4)	Isoclinic li	nes	·			
76.		magnetic bea	aring of	the su	n at noo	n is	178°. The n	nagnetic d	leclination at	the		
		e is	·(0)	00 E		/0 \	00.37	7.11	00.0			
	(1)	2° W	(2)	2° E		(3)	2° N	(4)	2° S			
77.		If the lower clamp is tightened and the upper clamp is loosened, the theodolite may be turned										
	(1)	With a relat	ive mot	ion betw	een veri	nier a	nd graduate	ed scales	of the lower pl	late		
	(2)	Without a r plate	elative	motion	between	vern	ier and gra	duated so	cales of the lo	wer		
	(3)	Both (1) and	(2)									
	(4)	About the he	orizonta	l axis								
78.	Tota	al station is us	sed for	100								
	(1)	Remote obje	ct heigh	t deteri	nination							
	(2)	Establishing	horizo	ntal con	trol							
	(3)	Establishing	vertica	l contro	ol							
	(4)	All of the ab	ove									
कच्च्य	ा कामार	ताठी जागा <i>।</i> SPA	CE FOR	ROUGH	WORK				P.	T.O.		

79.	Sensitivity of a level tube increases with										
	a.	An increase in radius of curvature of the bubble tube.									
	b.	Smoothness of finish of the inner surface of the bubble tube.									
	Answer options:										
	(1)	Only a is correct	(2)	Only b is correct							
	(3)	Both are correct	(4)	None is corre							
80.	If the intercept on a vertical staff is observed as 0.75 m from a tacheometer with the										
	line of sight horizontal, fitted with anallatic lens, the horizontal distance between										
	the tacheometer and the staff station is										
	(1)	0.75 m (2) $7.5 m$	(3)	75 m	(4)	750 m					
81.	Froude's transition curve is										
	(1)	Cubic spiral	(2)	Cubic parabo	ola						
	(3)	Bernoulli's lemniscate	(4)	Ellipse							
82.	A triangulation station selected close to the main station for avoiding intervening										
	obst	obstruction is called									
	(1)	Tie station	(2)	Eccentric sta	tion						
	(3)	Pivot station	(4)	Satellite stat	ion						
83.	An owner of a building requires ₹ 15,000 to repair his building after 5 years. What										
		sum should the owner have to invest now in order to recieve the required amount of									
		money at a rate of compound interest 8%?									
	(1)	₹ 10,207.50	(2)	₹ 10,720.50							
	(3)	₹ 10,270.50	(4)	₹ 10,072.50							
84.	While writing specifications, the following principles shall be adopted:										
	a.	Description of materials									
	b.	Workmanship, tools and plants									
	c.	Protection of new work									
	d.	Clauses of the specifications									
	e.	Expression									
	Answer options:										
	(1)	a, b and e	(2)	a, b, c, d and	е						
	(3)	b and e	(4)	a. d and e							

85.	Purposes of rate analysis are											
	 To determine the current rate per unit of an item at the locality 											
	b.											
	c.											
	d. To fix labour contract rates											
	Answer options:											
	(1) a, b and d				(2)	b, c and	d					
	(3)	a, b and c			(4)	a, b, c, a	nd d					
86.	The usual practice of bending of a bar near a support is at an angle of											
	(1)	30°	(2)	45°	(3)	60°	(4)	15°				
87.	For painting corrugated steel sheet, surfaces shall be measured flat and the area worked out shall be increased by											
	(1)	10%	(2)	12%	(3)	14%	(4)	20%				
88.	Which of the following specifications are <i>not</i> correct with reference to a brickwork?											
	a.	Brickwork shall be done in such a way that all joints are full of mortar.										
	Ъ.	For all exposed brickworks, double scaffolding having two sets of vertical supports shall be provided.										
	c.	Bricks required for brick masonry with mud mortar need not be soaked.										
	Answer options:											
	(1)	a and b only			(2)	a and c onl	y					
	(3)	b and c only				None of the						
89.	The nominal lead and lift allowed for earthwork in excavations of foundations are											
	(1)	30 m and 1.5	m		(2)	20 m an	d 2·0 m	,				
	(3)	15 m and 3·0	m		(4)	10 m an	d 4·5 m					
कच्च्य	कामार	ताठी जागा / SPAC	E FOR	ROUGH W	ORK		8	P.T.O.				

- **90.** Which method of depreciation is suitable for finding depreciation of a building having a life of 100 years?
 - (1) Constant percentage method
 - (2) Straight-line method
 - (3) Sinking fund method
 - (4) Quantity survey method
- 91. For 1 cumec of cement concrete proportion with stone chips 1:2:4, the required number of cement bags is
 - (1) 6.34

(2) 6.0

(3) 5.5

- (4) 4.5
- 92. In a typical compaction curve as indicated in the diagram, points 'A' and 'B' have same dry densities. Choose the most appropriate statement from the following:

- (1) Soil at 'A' will have more swelling potential and less shrinking upon moisture variation, compared to 'B'.
- (2) Soil at 'A' will have same swelling and shrinking potential as soil at 'B'.
- (3) Soil at 'A' will have less swelling potential and higher shrinking potential compared with soil at 'B'.
- (4) The swelling-shrinking potential for soil at 'A' and 'B' cannot be predicted with the given data.

93. Select the appropriate alternative from the following:

Soil deposit is called as 'over-consolidated', if

- $(1) \quad P_o > P_c$
- (2) $P_o \le P_c$
- $(3) \quad P_o = P_c$
- $(4) \quad P_o < P_c \quad .$

where P_o is the present effective overburden pressure and P_c is preconsolidation pressure.

94. Following are the statements about the major differences between Terzaghi's analysis ("T") and Meyerhof's analysis ('M') of bearing capacity:

- a. "T" is for homogeneous and isotropic soils but 'M' accounts for non-isotropy.
- b. In T', the failure surfaces form upto founding level but in 'M', they are extended upto ground level.
- c. In 'T', the angle of wedge formed beneath the foundation is assumed to be equal to the angle of internal friction of the soil but in 'M', it varies.
- d. In 'T', the load acting on the foundation is concentric and vertical but in 'M', it is assumed as eccentric.

Ascertain the correctness of the above statements and write the correct code.

- Statement a is the only correct statement
- (2) Statements a and b are correct
- (3) Statements b and c are correct
- (4) Statements a and d are correct

- 95. A 10 m deep canal is constructed in purely cohesive soil having $c = 0.2 \text{ kg/cm}^2$, $\phi = 0^\circ$, G = 2.5, e = 0.5. The stability number is 0.1. In a canal running in full condition, the factor of safety w.r.t. cohesion against failure of side slopes will be
 - (1) 1.0
 - (2) 1.5
 - (3) 2.0
 - (4) 2.5
- **96.** Statement A: Terzaghi's bearing capacity theory assumes strip foundation in the analysis.
 - Statement B: Terzaghi's theory does not consider development of shear resistance in the soil mass above founding level.
 - (1) Both the statements A and B are true
 - (2) Statement A is true but B is false
 - (3) Statement A is false but B is true
 - (4) Both the statements A and B are false
- 97. Statement A: Plate load test is a short duration test and is not suitable in cohesive soils.
 - Statement B: Plate load test does not record the total settlement of the test plate in clayey soils.
 - (1) Both the statements A and B are true but B is not the correct explanation of A
 - (2) Statement A is true but B is false
 - (3) Statement A is false but B is true
 - (4) Both the statements A and B are true and B is the correct explanation of A

98.	A soft saturated clayey soil tested unconfined gave an axial stress of 50 kN/m ² at
	failure. The shear strength of the soil is

- (1) 50 kN/m^2
- (2) 100 kN/m²
- (3) 25 kN/m²
- (4) None of the above

99. Match the following:

- a. Electro-osmosis
- I. Provide water free area for work
- b. Under reamed pile
- II. Elliminate differential settlement
- c. Cellular cofferdam
- III. Dewatering of fine grained soil
- d. Raft foundation
- IV. Foundation for expansive soil
- a b c d
- (1) III IV I
- (2) III IV I II
- (3) IV III I II
- (4) I IV III II
- 100. A wall 6 m high has a smooth vertical back and retained sand as a backfill which is submerged. The sand has γ_{sat} = 20 kN/m³ and ϕ = 30°. The total active earth pressure is
 - (1) 90 kN/m²
 - (2) 60 kN/m²
 - (3) 120 kN/m²
 - (4) None of the above

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2017 परीक्षेचा दिनांक : 17 डिसेंबर, 2017

विषय: प्रश्नपत्रिका क्र. 2 (स्थापत्य अभियांत्रिकी पेपर - 11)

महाराष्ट्र लोकसेवा आयोगातफँ घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2017 या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांची अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे					
क्रमांक	संच \Lambda	संच B	संच C	संच D		
1	2	2	2	4		
2	3	1	4	4		
3	3	1	3	3		
4	2	3	4	3		
5	2	4	4	3		
6	3	4	3	3		
7	3	1	1	2		
8	2	2	4	2		
9	2	3	2	2		
10	2	2	4	3		
11	1	4	2	#		
12	1	3	4	2		
13	3	4	1	2		
14	4	4	4	4		
15	4	3	4	2		
16	1	1	4	4		
17	2	4	2	3		
18	3	2	4	2		
19	2	4	#	3		
20	4	2	3	1		
21	3	4	1	4		
22	4	1	2	2		
23	4	4	4	1		
24	3	4	1	4		
25	1	4	1	3		

KEY							
प्रश्न	उत्तरे						
क्रमांक	संच ∧	संच B	संच C	संच D			
26	4	2	1	3			
27	2	4	2	2			
28	4	#	2	#			
29	2	3	2	1			
30	4	1	3	2			
31	1	2	1	4			
32	4	4	3	2			
33	4	1	4	3			
34	4	1	3	4			
35	2	1	2	1			
36	4	2	3	2			
37	#	2	4	1			
38	3	2	4	1			
39	1	3	3	4			
40	2	1	3	#			
41	4	3	3	3			
42	1	4	3	1			
43	1	3	2	4			
44	1	2	2	3			
45	2	3	2	2			
46	2	4	3	2			
47	2	4	#	2			
48	3	3	2	3			
49	1	3	2	3			
50	3	3	4	2			

Date: 28th March, 2018

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र. २ (स्थापत्य अभियांत्रिकी पेपर - 11)

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
51	4	3	2	2		
52	3	2	4	3		
53	2	2	3	3		
54	3	2	2	2		
55	4	3	3	2		
56	4	#	1	2		
57	3	2	4	1		
58	3	2	2	1		
59	3	4	1	3		
60	3	2	4	4		
61	2	4	3	4		
62	2	3	3	1		
63	2	2	2	2		
64	3	3	#	3		
65	#	1	1	2		
66	2	4	2	4		
67	2	2	4	3		
68	4	1	2	4		
69	2	4	3	4		
70	4	3	4	3		
71	3	3	1	1		
72	2	2	2	4		
73	3	#	î	2		
74	1	1	1	4		
75	4	2	4	2		

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
76	2	4	#	4		
77	1	2	3	1		
78	4	3	1	4		
79	3	4	4	4		
80	3	1	3	4		
81	2	2	2	2		
82	#	1	2	4		
83	1	1	2	#		
84	2	4	3	3		
85	4	#	3	1		
86	2	3	2	2		
87	3	1	2	4		
88	4	4	3	1		
89	1	3	3	1		
90	2	2	2	1		
91	1	2	2	2		
92	1	2	2	2		
93	4	3	1	2		
94	#	3	1	3		
95	3	2	3	1		
96	1	2	4	3		
97	4	3	4	4		
98	3	3	1	3		
99	2	2	2	2		
100	2	2	3	3		

Date: 28th March, 2018

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत

प्रश्नपुस्तिका क्रमांक BOOKLET No.

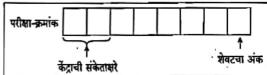
2018

प्रश्नपुस्तिका-I K

12 संचक्र.

A

102933


स्थापत्य अभियांत्रिकी पेपर – 1

वेळ: 2 (दोन) तास

एकूण प्रश्न : 100 एकूण गुण : 200

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. छाकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीव

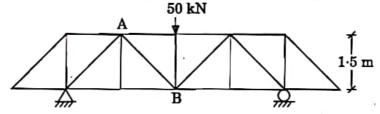
झा प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपयैत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपयैत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

प्रेक्षकांच्या सूचनेविना हे सील उघडू नये

1. "The partial derivative of the total internal energy in a beam, with respect to the load applied at any point is equal to the deflection at that point." This is the statement of


3

- (1) Moment area theorem
- (2) Castigliano's second theorem
- (3) Conjugate beam theorem
- (4) Müller Breslau's influence theorem
- 2. For a fixed beam AB, the support B settles by δ downward, then what is the direction of rotation of point A and B?
 - (1) ve, ve

(2) + ve, + ve

(3) + ve, - ve

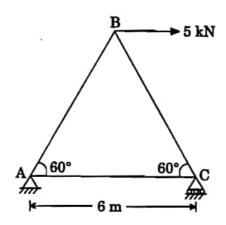
- (4) ve, + ve
- 3. The force in member AB of the truss shown in the figure below is

- 6 panels @ 1.5 m each -

(1) 25 kN (c)

(2) $25\sqrt{2} \text{ kN (t)}$

(3) $25\sqrt{2} \text{ kN (c)}$


- (4) 25 kN (t)
- 4. For the given figure, the moment at A, whose far end is fixed, MA is

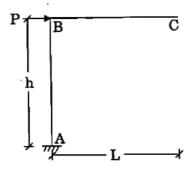
- (1) $\frac{3EI}{l}$. θ_A
- (2) $\frac{4EI}{I}$. θ_A
- (3) $\frac{2EI}{I}$. θ_A
- (4) $\frac{6EI}{I}$. θ_A

- 5. The distribution factor is
 - Ratio of stiffness of member and member
 - (2) Ratio of stiffness of near joint and far joint
 - (3) Ratio of stiffness of member and joint (sum of member stiffness)
 - (4) Ratio of stiffness of joint and member

6. Force in the member BC of the truss shown in the figure below is

- (1) 5 KN (tensile)
- (2) Zero
- (3) 2.88 KN (compressive)
- (4) 5 KN (compressive)
- 7. A fixed beam AB of span L is subjected to a clockwise moment M at a distance 'a' from end A. Fixed end moment at end A will be
 - (1) $\frac{M}{L^2}$ (L-a) (L-3a)
- (2) $\frac{M}{L^2}$ a (2L 3a)

(3) $\frac{M}{L^2}$ a (L-a)

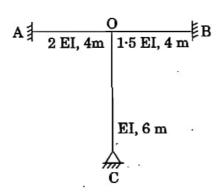

- (4) $\frac{M}{L^2} (L-a) (2L-a)$
- 8. A beam of span l is fixed at one end and simply supported at other end. It carries uniformly distributed load of w per unit run over the whole span. The reaction (R) at the simply supported end is
 - $(1) \quad R = \frac{3}{8} wl$

(2) $R = \frac{5}{8} wl$

(3) $R = \frac{1}{2} wl$

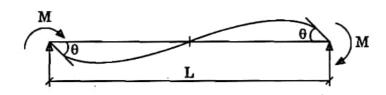
- (4) $R = \frac{1}{3} wl$
- Degree of static indeterminacy of a rigid jointed plane frame having 15 members,
 3 reaction components and 14 joints is
 - (1) 2
- (2) 3
- (3) 6
- (4) 8

10. A rigid cantilever frame ABC is loaded and supported as shown in the figure below. The horizontal displacement of point C is

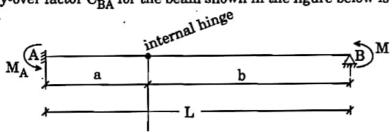


 $(1) \quad \frac{2 \text{ Ph}^3}{3 \text{EI}}$

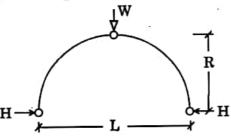
 $(2) \quad \frac{\mathrm{Ph}^2(2\mathrm{h} + \mathrm{L})}{2\mathrm{EI}}$


 $(3) \quad \frac{Ph^3}{3EI}$

- $(4) \quad \frac{Ph^2(h+L)}{3EI}$
- 11. The distribution factor for the members OA, OB and OC are



- (1) 0.125, 0.375, 0.5
- (2) 0.375, 0.5, 0.125
- (3) 0.5, 0.125, 0.375
- (4) 0.5, 0.375, 0.125


- 12. The stiffness co-ethcients K_{ij} indicate
 - (1) Force at i due to a unit deformation at j
 - (2) Deformation at j due to a unit force at i
 - (3) Deformation at i due to a unit force at j
 - (4) Force at j due to a unit deformation at i
- 13. A beam EI-constant of span L is subjected to clockwise moments M at both the ends A and B. The rotation of end A works out to be

- $(1) \quad \frac{\text{ML}}{2\text{El}}$
- $(2) \quad \frac{ML}{3EL}$
- (3) ML 4EI
- $(4) \quad \frac{ML}{6EI}$
- 14. Carry-over factor C_{BA} for the beam shown in the figure below is

- (1) a/b
- (2) 3/4
- (3) a/L
- (4) 1/2
- 15. For a three-hinged parabolic arch, what will be the ratio \mathbb{L}/\mathbb{R} to satisfy H = W?

- (1) 0.50
- (2) 1.50
- (3) 2.00
- (4) 4.00

16.	Match	the	following:
70.	Match	une	TOHOWING .

- Three-hinged arch a.
- third Statically indeterminate I. degree
- Two-hinged arch b.

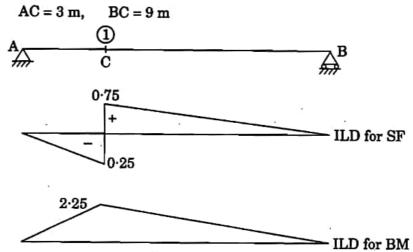
Statically indeterminate first II. degree

Hingeless arch c.

Statically determinate III.

- b a
- Ш Ι II (1)
- (2)Ш П
- Ш (3) \mathbf{II}
- Ι Ш (4) II
- What is true for flexibility and stiffness matrix? 17.

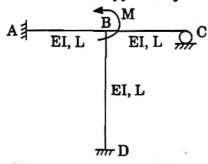
C


- They are square matrix a.
- The diagonal elements are non-zero and having positive values b.
- Element ij= Element ji c.
- d. They are inverse of each other

Answer Options:

- (1) a and b
- All of the above (2)
- (3) c and d
- (4)a, c, and d
- 18. Muller - Breslau Principle in structural analysis is used for
 - **(1)** Drawing ILD for any force function
 - (2)Writing virtual work equation
 - (3)Superposition of load effects
 - None of the above (4)

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK


19. The given figure shows ILD for SF and BM at section 1

The value of SF and BM at 1 due to concentrated load of 20 kN at mid span will be

- (1) 0.75 kN and 2.25 kN-m
- (2) 5 kN and 5 kN-m
- (3) 7.5 kN and 10 kN-m
- (4) 10 kN and 30 kN-m

20. All members of the frame shown below have the same flexural rigidity EI and length L. If a moment M is applied at joint B, the rotation of the joints is

- $(1) \quad \frac{ML}{12E}$
- $(2) \quad \frac{ML}{11EL}$
- $(3) \quad \frac{ML}{8EI}$
- $(4) \quad \frac{ML}{7EI}$
- 21. A stiffness matrix is to be generated for beam AB as horizontal flexural member. As per the method adopted for calculation of stiffness matrix, if end A is given translational displacement in vertically upward direction, the end forces generated at end B' are
 - (1) No forces at end B
 - (2) 12 EI/L³ vertical force and 6EI/L² moment
 - (3) -6 EI/L² vertical force and 2EI/L moment
 - (4) 6 EI/L² vertical force and 4EI/L moment

22.	If the stiffness matrix of beam element is given as $\frac{2EI}{L}\begin{bmatrix} 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} & -1 \\ 1 & 2 \end{bmatrix}$	then the
-----	--	---	----------

flexibility matrix is

$$(1) \quad \frac{L}{6EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$(2) \quad \frac{L}{2EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

(3)
$$\frac{L}{3EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$(4) \quad \frac{L}{6EI} \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$$

23. The inclination of a lacing bar with the axis of the compression member is θ . Then ' θ ' shall **not** be less than

- (1) 30°
- (2) 40°
- (3) 50°
- (4) 70°

24. A column splice is used to increase

- (1) the length of the column
- (2) the strength of the column
- (3) the rigidity of the column
- (4) the cross-sectional area of the column

25. In a cantilever plate girder to prevent web buckling, horizontal stiffeners are provided running along the span. They are provided

- (1) below the neutral axis
- (2) over the entire cross-section (above as well as below neutral axis)
- (3) above the neutral axis
- (4) None of the above

26. Number of bolts requited in a bolted joint is equal to

 $(1) \quad \frac{\text{Force}}{\text{Bolt value}}$

- $(2) \frac{Force}{Strength of bolt in shearing}$
- (3) Force
 Strength of bolt in bearing
- (4) Force Strength of bolt in tearing

27. The deflection of beams may be decreased by

- (1) Increasing the depth of beam
- (2) Increasing the span
- (3) Decreasing the depth of beam
- (4) Increasing the width of beam

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- 28. The Indian standard code which deals with steel structures is
 - (1) IS: 456
- (2) IS: 875
- (3) IS:800
- (4) IS: 1893
- 29. Slenderness ratio of lacing bars should not exceed
 - (1) 100
- (2) 120
- (3) 145
- (4) 180

- 30. The effective length of fillet weld is taken as
 - (1) the actual length plus twice the size of weld.
 - (2) the actual length minus twice the size of weld.
 - (3) the actual length plus thrice the size of weld.
 - (4) the actual length minus thrice the size of weld.
- 31. The fusible material used in welding to dissolve and facilitate the removal of oxides and other undesirable substances is known as
 - (1) inert material

(2) inert gas

(3) flux

- (4) catalytic agent
- **32.** Which of the following equations is correct for both, subjected to both combined shear and tension?

Where, V = Applied shear at service load

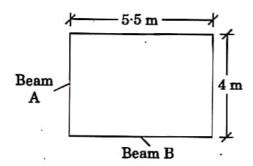
V_{sdf} = Design shear strength

Te = Externally applied tension at service load

 $T_{ndf} = Design tension strength$

- $(1) \quad \left(\frac{V}{V_{sdf}}\right)^2 + \left(\frac{T_e}{T_{ndf}}\right)^2 \leq 1$
- $(2) \quad \left(\frac{V}{V_{edf}}\right)^2 + \left(\frac{T_e}{T_{odf}}\right)^2 \ge 1$
- $(3) \quad \left(\frac{V}{V_{sdf}}\right) + \left(\frac{T_{e}}{T_{ndf}}\right) \leq 1$
- $(4) \quad \left(\frac{V}{V_{sdf}}\right) + \left(\frac{T_e}{T_{ndf}}\right) \ge 1$
- 33. What is the yield strength of bolt of class 4.6?
 - (1) 400 N/mm²

(2) 240 N/mm²

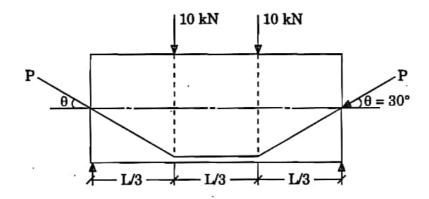

(3) 250 N/mm²

(4) 500 N/mm²

- 34. What are the different limit states of design as per IS 456: 2000?
 - a. Limit state of failure
 - b. Limit state of damage
 - c. Limit state of collapse
 - d. Limit state of serviceability

Answer Options:

- (1) a and d
- (2) b and c
- (3) c and d
- (4) a and b
- 35. Maximum shear force for three equal spans of beam/slab occur at
 - (1) inner side of end support
 - (2) inner side of support next to end support
 - (3) outer side of support next to end support
 - (4) outer side of end support
- 36. In the design of slab, the diameter of reinforcing bars shall not exceed
 - (1) one-eighth of overall thickness of slab
 - (2) one-fourth of overall thickness of slab
 - (3) one-half of overall thickness of slab
 - (4) one-third of overall thickness of slab
- 37. Determine the slab area of which load is acting on supporting beams A and B



- (1) 5.5 m^2 and 7.0 m^2
- (2) 4.0 m^2 and 5.5 m^2
- (3) 7.0 m^2 and 4.0 m^2
- (4) 4.0 m^2 and 7.0 m^2

(1) remains within the flange (2) remains below the slab (3) coincides with the geometrical centre of the beam (4) None of the above 39. According to IS 456, two-way slabs with corners held down are assumed to divided in each direction into middle strips and edge strips such that the widt middle strip is, (1) half of the width of the slab (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral state the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 300 what is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0	90.	A lee-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis										
(2) remains below the slab (3) coincides with the geometrical centre of the beam (4) None of the above 39. According to IS 456, two-way slabs with corners held down are assumed to divided in each direction into middle strips and edge strips such that the width middle strip is, (1) half of the width of the slab (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 300 what is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than				ithin the	flange			•,,				
 (3) coincides with the geometrical centre of the beam (4) None of the above 39. According to IS 456, two-way slabs with corners held down are assumed to divided in each direction into middle strips and edge strips such that the width middle strip is, (1) half of the width of the slab (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 300 what is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 	4	(2)										
 (4) None of the above 39. According to IS 456, two-way slabs with corners held down are assumed to divided in each direction into middle strips and edge strips such that the width middle strip is, (1) half of the width of the slab (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0-65 l (2) 0-75 l (3) 0-80 l (4) 0-85 l 42. If 'H' is the total height of the building, under transient wind load the lateral statche top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 		(3)	coincides w	vith the g	eometrical c	entre of	the beam					
divided in each direction into middle strips and edge strips such that the widt middle strip is, (1) half of the width of the slab (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0		(4)										
 (2) two-third of the width of the slab (3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 	39.	divi	According to IS 456, two-way slabs with corners held down are assumed to be divided in each direction into middle strips and edge strips such that the width of middle strip is,									
(3) three-fourth of the width of the slab (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than		(1)	half of the	width of	the slab	<i>(</i> -						
 (4) four-fifth of the width of the slab 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 	•	(2)	two-third o	f the wid	th of the sla	Ь						
 40. Span effective depth ratio for cantilever for span upto 10 m is (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 		(3)	three-fourt	h of the v	width of the	slab	*:					
 (1) 7 (2) 20 (3) 26 (4) 35 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 		(4)	four-fifth of	f the wid	th of the slat)						
 41. Effective length of compression member which is effectively held in position restrained against rotation at both ends is 0.65 l 0.75 l 0.80 l 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed H/200 H/300 H/300 H/400 H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? 20 mm 10 mm 10 mm 10 mm 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 	40.	Spa	n effective de	epth ratio	o for cantilev	er for sp	an upto 10 m	is		_		
restrained against rotation at both ends is (1) 0.65 l (2) 0.75 l (3) 0.80 l (4) 0.85 l 42. If 'H' is the total height of the building, under transient wind load the lateral stat the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than		(1)	7	(2)	20	(3)	26	(4)	35			
 42. If 'H' is the total height of the building, under transient wind load the lateral so at the top should not exceed (1) H/200 (2) H/300 (3) H/400 (4) H/500 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than 	41.						ch is effecti	vely held	l in positio	n and		
at the top should not exceed (1) $\frac{H}{200}$ (2) $\frac{H}{300}$ (3) $\frac{H}{400}$ (4) $\frac{H}{500}$ 43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than		(1)	0·65 <i>l</i>	. (2)	0·75 l	(3)	0·80 <i>l</i>	(4)	0·85 <i>l</i>			
43. An axially loaded column is 300 × 300 mm in size, effective length of column is 3 What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than	42.	If 'H' is the total height of the building, under transient wind load the lateral sway at the top should not exceed										
What is the minimum eccentricity of the axial load for column? (1) 20 mm (2) 16 mm (3) 10 mm (4) 0 44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than		(1)	H 200	(2)	H 300	(3)	H 400	(4)	H 500			
44. In reinforced and plain concrete footings on soils, the thickness at the edge shall not less than	43.							_	of column i	s 3 m.		
not less than		(1)	20 mm	(2)	16 mm	(3)	10 mm	(4)	0			
(1) 200 mm · (2) 150 mm (2) 200 mm (4) 250 mm	44.			d plain c	oncrete footi	ngs on so	oils, the thick	cness at	the edge sh	all be		
(1) 200 min (2) 150 min (3) 500 min (4) 250 min		(1)	200 mm ·	(2)	150 mm	(3)	300 mm	(4)	250 mm			
कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK		*******	गर्जी ज्याग । ६०	ACE FOR	POLICH WOT	, r						

45.		e maximum permissible final deflecti		·					
	(1)	span / 350	(2)	span / 250					
	(3)	span / 480	. (4)	span / 500					
46.		e maximum effective reinforcement ailure according to IS : 1343 is limit		of a bonded prestressed concrete be	am				
		0.15	(2)	0.40					
	(1)		(4)	0.50					
	(3)	0.25	(4)	0.30					
47.	The	e moment of resistance of a rectangu	lar sec	etion depends upon					
	(1)	ultimate strain in concrete							
	(2)	area of high tensile tendons							
	(3)	tensile strength in concrete							
	(4)	compressive stress in concrete		•					
48.	In c	case of prestressed concrete element	, which	statement is <i>not</i> correct?					
	(1)	(1) Concrete remains uncracked and it protects steel from corrosion.							
	(2)	(2) It can be used more effectively in liquid retaining structures.							
	(3)	(3) The stiffness of structure is less due to uncracked condition of concrete.							
	(4)	Shear resisting capacity is increas	sed due	e to pre-compression.					
49.		Prestressing force transmitted to concrete as initial internal stress to counteract the internal stress developed due to external loads is called							
	(1)	Stress concept							
	(2)	Strength concept							
	(3)	Force concept							
	(4)	Load balancing concept							
	-	साठी जागा / SPACE FOR ROUGH WORK	_		Γ.Ο.				

50. A simply supported beam of span 9 m is subjected to two point loads, each of 10 kN acting at $\frac{1}{3}$ of span as shown in the figure. If self-weight of beam is neglected, then how much prestressing force is required to counter-balance the external loads if $\theta = 30^{\circ}$?

- (1) 5 kN
- (2) 10 kN
- (3) 20 kN
- (4) 30 kN
- 51. The approximate value of shrinkage strain for design of post-tensioning member is Where "t' = age of concrete at transfer in days.
 - (1) $\frac{0.0001}{\log_{10}(t+2)}$
 - (2) 0.0003
 - (3) $\frac{0.0002}{\log_{10}(t+2)}$
 - $(4) \quad \frac{0.0003}{\log_{10}(t+2)}$

- 52. The partial safety factors for material strength are
 - (1) 1.15 for concrete and 1.5 for steel
 - (2) 1.5 for concrete and 1.15 for steel
 - (3) 1.5 for both concrete and steel
 - (4) 1.15 for both concrete and steel
- 53. A post-tensioned prestressed concrete beam is having a cross-section of 300 \times 300. The area of end block is 100 \times 100 mm. Instead of 100 \times 100 mm end block, 150 mm \times 150 mm end block is provided. What will be the reduction in bursting forces? Let the load in tendons be P_k .
 - (1) 0.03 P_k
- (2) 0.04 P_k
- (3) 0.045 P_L
- (4) 0.05 P_k
- 54. Prestressing in a concrete beam with sloping or curve profile
 - (1) increases shear strength
 - (2) increases flexural strength
 - (3) decreases shear strength
 - (4) Both (1) and (2)
- 55. The bearing stress on concrete after accounting for all losses due to relaxation of steel, elastic shortening, creep of concrete, slip and seating of anchorage shall not exceed ______

(where, f_{ci} is the concrete strength at transfer, A_{br} is bearing area and A_{pun} is punching area)

- (1) $0.16 \, f_{ci} \, \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 \, f_{ci}$ whichever is smaller
- (2) $0.48 f_{ci} \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 f_{ci}$ whichever is smaller
- (3) $0.25 f_{ci} \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 f_{ci}$ whichever is smaller
- (4) $0.34 f_{ci} \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 f_{ci}$ whichever is smaller

56.	The difference between EST of succeeding activity and EFT of the activity under consideration is called								
	(1)	Total float		4					
	(2)	Independent float		*					
	(3)		ř.						
	.(4)	Free float							
57.	Wh	ich of the following are the n	nethods of sch	eduling?					
	(1)	Bar charts or Gantt charts	1	*					
	(2)	Milestone charts							
	(3)	Network anaysis		•					
	(4)	All of the above							
58.	The	excess of minimum availabl	e time over ac	tivity duration is called					
	(1)	total float	(2)	free float					
231	(3)	independent float	(4)	None of the above					
59.	Which of the following are the significant achievements of Taylor towards scientific management approach?								
	(1)	Work study							
	(2)	Incentive scheme							
	(3)								
	(4)								
60.	Whi	ich of the following networks	is activity ori	ented ?					
	(1)	PERT	(2)	CPM					
	(3)	Both (1) and (2)	(4)	None of the above					
61.	The time required to complete an activity under abnormal or extremely adverse conditions in which everything goes wrong is called								
	(1)	optimistic time		*					
	(2)	most likely time							
	(3)	pessimistic time							
	(4)	None of the above							
कच्च्य	कामार	नाठी जागा / SPACE FOR ROUGH	1 WORK						

62. Wha	t is	the	purpose	of job	layout	?
---------	------	-----	---------	--------	--------	---

- (1) To provide more economical methods of working
- (2) Shorter leads of materials
- (3) Reduction in completion time
- (4) All of the above

63. Which of the following codes is relevant to fire safety?

- (1) IS 456 2000
- (2) IS 1256 1967
- (3) IS 800 1950
- (4) None of the above

64. What is dummy activity?

- (1) Activity having zero duration
- (2) Activity shown by dotted line
- (3) Activity which shows dependency
- (4) All of the above

65. Which of the following sentences is correct?

- (1) Except initial and end events, all events in the network are dual role events.
- (2) All events in the network are dual role events.
- (3) There is only one dual role event in the network.
- (4) None of the above

66. PERT stands for

- (1) Perfect Evaluation and Review Technique
- (2) Programme Elongation and Review Technique
- (3) Programme Evaluation and Review Technique
- (4) None of the above

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- 67. Floating point form representation of a real number x is denoted by $x = f \times 10^{E}$ in which f is called
 - (1) Sign bit

(2) Exponent

(3) Partial derivative

- (4) Mantissa
- 68. What will be the next approximation for finding a real root of equation

 $x^3 - 2x - 5 = 0$; if it is solved using the Newton-Raphson method and initial approximation of x = 2?

(1) 2.4

(2) 2.3

(3) 2.1

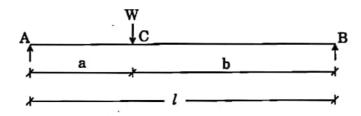
- (4) 2.2
- 69. An iterative formula to find \sqrt{Y} (where Y is a positive number) by the Newton-Raphson technique is given by expression
 - (1) $x_{i+1} = \frac{1}{4} \left(x_i + \frac{Y}{x_i} \right)$

(2) $x_{i+1} = \frac{1}{3} \left(x_i + \frac{Y}{x_i} \right)$

- (3) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{Y}{x_i} \right)$
- (4) $x_{i+1} = \frac{1}{4} \left(x_i \frac{Y}{x_i} \right)$
- 70. The area under straight line is an estimate of the integral of f(x) between the limits a and b and the result of this integration is called trapezoidal rule. The formula used in area calculation by this rule is
 - (1) $I = (a b) \frac{f(a) + f(b)}{4}$
- (2) $I = (b-a) \frac{f(b) f(a)}{2}$
- (3) $I = (b-a) \frac{f(a) + f(b)}{2}$
- (4) $I = (b-a) \frac{f(a) + f(b)}{3}$
- 71. The method in which both sides of equations are multiplied by non-zero constant is classified as
 - (1) Gaussian elimination method
 - (2) Gaussian inconsistent procedure
 - (3) Gaussian consistent procedure
 - (4) Gaussian substitute procedure

72.	The two segment trapezoidal rule of integration is exact for integrating at most							
	(1)	first		(2)	second			
	(3)	third		(4)	fourth			
73.	Div	ision by zero during forwa	ard eliminati	on s	teps in Naive Gaussia	n Elimination of		
	the	set of equation $[A][X] = [C]$] implies the	coe	fficient matrix [A]			
	(1)	is invertible			120			
•	(2)	is non-singular			*			
	(3)	may be singular or non-	singular			÷:		
	(4)	is singular			<u></u>			
74.		at will be the value of fu	nction f(x) =	= x ³	+ 2x - 2 = 0 in the	next iteration if		
		= -2 and $f(1) = 1$?	•					
	(1)	- 0.625		(2)	- 0.725			
	(3)	- 0.875		(4)	- 0.975			
75.		the equation $f(x) = x^2$ - ation at second interval by				d 2. The root of		
	(1)	1.5		(2)	2			
	(3)	1.66		(4)	1.75			
76.	The	root of equation x ³ – 4x –	9 = 0 using	the t	pisection method is			
	(1)	1.6875		(2)	2-6875			
	(3)	3.6875		(4)	4.6875			
77.	In the solution of simultaneous equations by the Gauss elimination method for solving equations, triangularization leads to							
	(1)	singular matrix		ŧ.				
	(2)	upper triangular matrix	i;			•		
	(3)	diagonal matrix			~	₹:		
	(4)	lower triangular matrix				±,		
कच्च्य	ा कामार	ताठी जागा / SPACE FOR ROL	JGH WORK			P.T.O.		

78. Hardness of the stones can be tested by in		in the	labora	atory.			
	(1)	Impact strength		(2)	Abrasion stre	ngth	
	(3)	Mohr's scale		(4)	Crushing stre	ngth	
79.	Whi	ch of the following te	sts is used for n	neasui	ring the workal	oility o	of the concrete ?
	(1)	Chloride penetratio	n test		(se)		
	(2)	Slump test					
	(3)	Initial setting time	test				
	(4)	Standard consisten	cy test				,
80.		aggregate ratio of or regate Cement Ratio			, the workabilit	ty is i	ndependent of the
	(1)	1.0 (2)	1.5	(3)	2.0	(4)	3.0
81.	Ran	kine's formula for fin	ding the minim	um de	pth of foundati	on for	loose soil is
	(1)	$d = \frac{q}{\gamma} \left(\frac{1 + \sin \phi}{1 - \sin \phi} \right)$		(2)	$d = \frac{q}{\gamma} \left(\frac{1 - \sin \alpha}{1 + \sin \alpha} \right)$	$\left(\frac{\phi}{\phi}\right)^2$	•
	(3)	$d = \frac{q}{\gamma} \left(\frac{1 - \sin \phi}{1 + \sin \phi} \right)$		(4)	$d = \frac{q}{\gamma} \left(\frac{1 + \sin}{1 - \sin} \right)$	$\left(\frac{\phi}{\phi}\right)^2$	
82.		te lead, red lead, ox	ides of zinc, ox	ides o	f iron are the	substa	ances used in the
	(1)	Vehicle (2)	Drier	(3)	Carrier	(4)	Base
83.		at is the name of the ne bottom of an entra		or slat	of concrete or	stone	usually provided
	(1)	Jamb (2)	Reveal	(3)	Cornice	(4)	Threshold
84.	In to	esting final setting ti	me of cement a	needle	of		•
	(1)	1 mm square section	n is used				
	(2)	1 mm diameter is u	sed				
	(3)	2 mm square section	n is used			٠.	
	(4)	5 mm square section					
		गठी जागा / SPACE FOR					


85.	Whi	Which of the following is not a non-destructive method of testing concrete?									
	(1)	Rebound test									
	(2)	Radioactive pene	etra	tion method							
	(3)	Soundness test									
	(4)	Dynamic or vibra	atio	n test							
86.	_	oublic halls and a ceased. This persi				ersists even a	fter the	source o	f sound		
	(1)	Absorption			(2)	Echoes		•			
**	(3)	Reverberation			(4)	Reflection of	sound				
87.		lime which has dening solely on t									
	(1)	Quick lime			(2)	Fat lime			•		
	(3)	Hydraulic lime			(4)	Hydrated lin	ne .				
88.	Wh	at should be the a	spec	t for a bedroon	m?						
	(1)	West			(2)	North-West					
	(3)	South-West			(4)	All of the ab	ove				
89.	For	roominess, length	ı to	width ratio sh	ould be						
• :	(1)	1:1 to 1:5			(2)	1.2:1 to 1.5	:1				
	(3)	1.5:1 to 2:1			(4)	1.5:1 to 1.7	5:1				
90.		a point in the wel aring stress (τ) at									
ŷ.	(1)		(2)	4 MPa	(3)	2·5 MPa	(4)	1 MPa			
91.	ent pro	eam of length 10 ire length and re duced in the bear is at a distance of	sts	on two simple	suppo	rts. In order	that th	e maxim	um BM		
	(1)	5·86 m	(2)	4·14 m	(3)	2·93 m	(4)	2·07 m	<i>5</i> :		
कच्छ	ा कामा	साठी जागा / SPACE।	FOR	ROUGH WORK	(,			P.T.O.		

- 92. Choose the correct relation between modulus of elasticity (E), modulus of rigidity (G) and bulk modulus (K) from the following options:
 - (1) $\frac{2}{E} = \frac{9}{G} + \frac{3}{K}$

(2) $\frac{9}{E} = \frac{3}{G} + \frac{1}{K}$

(3) $\frac{3}{E} = \frac{9}{G} + \frac{1}{K}$

- (4) $\frac{1}{E} = \frac{9}{G} + \frac{3}{K}$
- 93. In a simple bending theory, one of the assumptions is that the material of the beam is isotropic. This assumption means that the
 - (1) normal stress remains constant in all directions
 - (2) normal stress varies linearly in the material
 - (3) elastic constants are same in all the directions
 - (4) elastic constants vary linearly in the material
- 94. A simply supported beam of length "C' carries a point load W' at point 'C' as shown in the figure. The maximum deflection lies at

- (1) Point A
- (2) Point B
- (3) Point C
- (4) Between points B and C
- 95. In the torsion equation

$$\frac{\mathbf{T}}{\mathbf{J}} = \frac{\mathbf{\tau}}{\mathbf{R}} = \frac{\mathbf{C} \cdot \mathbf{\theta}}{l}$$

the term $\frac{J}{R}$ is called

(1) Shear modulus

(2) Section modulus

(3) Polar modulus

(4) None of the above

96. Two solid shafts 'A' and 'B' are made of the same material. The shaft 'A' is of 50 mm diameter and shaft 'B' is of 100 mm diameter. The strength of shaft 'B' is _____ of that of shaft 'A'.

(1) one-half

(2) double

(3) four times

(4) eight times

97. The shear force on a simply supported beam is proportional to

- displacement of the neutral axis
 - (2) sum of the forces
 - (3) sum of the transverse forces
 - (4) algebraic sum of the transverse forces

98. Deflection of the free end of cantilever having point load at the mid span is

(1) $\frac{Wl^3}{3EI}$

 $(2) \quad \frac{5Wl^3}{24EI}$

 $(3) \quad \frac{5Wl^3}{48EI}$

 $(4) \quad \frac{Wl^3}{48EI}$

99. An element in a strained body is subjected to only shear stress of intensity 50 MPa tending to rotate the body in clockwise direction. What is the magnitude of principal stresses?

(1) $\pm 50 \text{ MPa}$

- (2) + 50 MPa, -25 MPa
- (3) +25 MPa, -50 MPa
- (4) ± 25 MPa

100. Strain energy stored in a solid shaft due to application of Torque 'T' at free end while other end is fixed, if G is shear modulus, J is polar moment of inertia, and L is the length of shaft is/will be

(1) $\frac{TL^2}{GJ}$

 $(2) \quad \frac{T^2L^2}{2CL}$

 $(3) \quad \frac{2TL^2}{GJ}$

 $(4) \quad \frac{T^2L}{2GJ}$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

सूचना - (पृष्ठ 1 वरून पुढे.....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/र्किवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सद् प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

	नमुना प्रश्न
Pick out the	correct word to fill in the blank :
Q. No. 201.	I congratulate you your grand success.
-	(1) for (2) at
	(3) on (4) about ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
प्र. क्र. 201.	① ② ● ④
	अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरंक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. हााकरिता

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 परीक्षेचा दिनांक : 25 नोव्हेंबर, 2018

विषय: प्रश्नपत्रिका क्र.1 (स्थापत्य अभियांत्रिकी पेपर - I)

महाराष्ट्र लोकसेवा आयोगातर्फे घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे					
क्रमांक	संच \Lambda	संच B	संच C	संच D		
1	2	3	4	4		
2	#	3	4	3		
3	2	1	3	3		
4	2	4	4	3		
5	3	1	2	1		
6	4	3	3	1		
7	1	1	4	3		
8	1	1	2	3		
9	3	4	4	4		
10	3	1	1	2		
11	4	2	3	2		
12	1	1	4	#		
13	4	2	3	2		
14	1	#	3	3		
15	4	3	3	2		
16	2	1	1	4		
17	2	3	1	4		
18	1	3	3	1		
19	4	2	3	3		
20	2	4	4	3		
21	2	4	2	2		
22	1	2	2	4		
23	2	4	#	2		
24	1	4	2	3		
25	1	3	3	4		

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
26	1	4	2	2			
27	1	2	4	3			
28	3	3	4	4			
29	3	4	1	3			
30	2	2	3	4			
31	3	4	3	4			
32	1	1	2	3			
33	2	3	4	1			
34	3	4	2	4			
35	3	3	3	2			
36	1	3	4	#			
37	4	3	2	2			
38	1	1	3	2			
39	3	1	4	3			
40	1	3	3	4.			
41	1	3	4	1			
42	4	4	4	1			
43	1	2	3	3			
44	2	2	1	3			
45	1	#	4	4			
46	2	2	2	1			
47	#	-3	#	4			
48	3	2	2	1			
49	1	4	2	4			
50	3	4	3	2			

Date - 28th February, 2019

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र.१ (स्थापत्य अभियांत्रिकी पेपर - I)

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
51	3	1	4	2		
52	2	3	1	1		
53	4	3	1	4		
54	4	2	3	2		
55	2	4	3	2		
56	4	2	4	1		
57	4	3	1	2		
58	3	4	4	1		
59	4	2	1	1		
60	2	3	4	1		
61	3	4	2	1		
62	4	3	2	3		
63	2	4	1	3		
64	4	4	4	2		
65	1	3	2	3		
66	3	1	2	1		
67	4	4	1	2		
68	3	2	2	3		
69	3	#	1	3		
70	3	2	1	1		
71	1	2	1	4		
72	1	3	1	1		
73	3	4	3	3		
74	3	1	3	1		
75	4	1	2	1		

प्रश्न		उत्तरे	7	
क्रमांक	संच A	संच B	संच C	संच D
76	2	3	3	4
77	2	3	1	1
78	#	4	2	2
79	2	1	3	1
80	3	4	3	2
81	2	1	1	#
82	4	4	4	3
83	4	2	1	1
84	1	2	3	3
85	3	1	1	3
86	3	4	1	2
87	2	2	4	4
88	4	2	1	4
89	2	1	2	2
90	3	2	1	4
91	4	1	2	4
92	2	1	#	3
93	3	1	3	4
94	4	1	1	2
95	3	3	3	3
96	4	3	3	4
97	4	2	2	2
98	3	3	4	4
99	1	1	4	1
100	4	2	2	3

Date -28th February, 2019

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपुस्तिका क्रमांक BOOKLET No.

वेळ: 2 (दोन) तास

2018

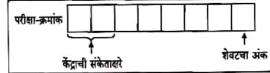
प्रश्नपुस्तिका-II

.12 ŧ

203005

स्थापत्य अभियांत्रिकी पेपर - 2

संच क्र.


एकूण प्रश्न : 100

एकूण गुणं : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करताना ओशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

प्रेक्षकांच्या सूचनेविना हे सील उघडू न

A

1.	For finding out time 't ₂ ' required to achieve 50% consolidation of 1 m thick clayey strata resting on impermeable rock at bottom and sandy soil at top, a laboratory consolidation test was carried out, using 1 cm thick sample obtained from the same strata. Time "t ₁ " was taken by it to achieve 25% consolidation, under double drainage condition, in the laboratory.											
	Cho	Choose the correct value of ratio of $\left(\frac{t_2}{t_1}\right)$ from the following :										
		4,00,0			16,000	(3)		0,000		None of	the above	
2.		The distance 'D' between centers of piles with top diameter 'd' should not be less than (from practical consideration)										
	(1)	2d		(2)	Bd	(3)	4d	29 	(4)	5d	•1,	
3.	Mat	Match List I and List II and select the correct List I (Construction Type)								les give		
	(a)	Cut-off trench of a dam to be constructed across flowing river						Cellular				
	(b)	Shallow foundation of a bridge pier						Embanl	ment t	ype coffe	erdam	
	(c)	Sequential repetition of underwater foundation work						Single v	vall she	etpile co	fferdam	
	(d)	Control of groundwater to prevent entry into deep excavation						Floating	g steel c	ylinder	cofferdam	
		(a)	(b)	(c)	(d)							
	(1)	(iv)	(iii)	(ii)	(i)							
	(2)	(ii)	(i)	(iv)	(iii)							
	(3)	(ii)	(iii)	(i)	(iv)		4		•			
	(4)	(iii)	(iv)	(ii)	(i)							
4.			atio and		ty of a se	oil sampl	e ha	ving equ	ıal volu	ume of	solids and	
		Void r	atio	Porosi	ty							

	Void ratio	Porosit
(1)	1.0	100%
(2)	0.5	50%
(3) .	1.0	50%
(4)	0.5	100%

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

 Let E₂ and E₁ represent compaction energy deployed for compacting soil as per modified compaction test and standard compaction test, as per IS.

Choose from the following correct ratio of $\left(\frac{E_2}{E_1}\right)$:

(1) About $4\frac{1}{2}$ times

(2) About $3\frac{1}{2}$ times

(3) About 2 times

(4) None of the above

6. On the same soil sample, both Standard and Modified Proctor compaction tests are conducted in the laboratory. The values of Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) for modified test compared to those for standard compaction test will respectively

(1) Increase, Increase

(2) Decrease, Increase

(3) Increase, Decrease

(4) No change, Increase

7. If the permeability, shrinkage and swelling of a compacted soil having same density on dry side of optimum moisture content is compared with compaction on wet side of optimum, the variation in these properties will be

(1) more, less, higher

(2) more, more, higher

(3) more, more, less

(4) less, less, higher

8. An embankment has a slope of 30° which was constructed with soil having $C = 30 \text{ kN/m}^2$, $\phi = 20^\circ$ and $\gamma = 15 \text{ kN/m}^3$. The height of embankment is 20 m. Using Taylor's stability no. $\frac{1}{40}$, the factor of safety with respect to cohesion is

(1) 0.25

(2) 9

(3) 4

(4) 1.5

The degree of consolidation depends upon

- (1) thickness of clay layer
- (2) coefficient of permeability
- (3) co-efficient of consolidation
- (4) All the above

- 10. The loss of head due to sudden expansion of a pipe is given by
 - $h_{\rm L} = \frac{V_1^2 V_2^2}{2g}$

(2) $h_L = \frac{0.5 \text{ V}^2}{2g}$

(3) $h_L = \frac{(V_1 - V_2)^2}{2g}$

- (4) None of the above
- 11. Bernoulli's equation is derived making assumption that
 - (1) the flow is uniform and incompressible
 - (2) the flow is non-viscous, uniform and steady
 - (3) the flow is steady, non-viscous, incompressible and irrotational
 - (4) None of the above
- 12. For the laminar flow through a circular pipe
 - (1) the maximum velocity = 1.5 times the average velocity
 - (2) the maximum velocity = 2.0 times the average velocity
 - (3) the maximum velocity = 2.5 times the average velocity
 - (4) None of the above
- 13. Depth at which specific energy is minimum is known as
 - (1) Critical depth

(2) Conjugate depth

(3) Alternate depth

- (4) Normal depth
- 14. In a rectangular channel section, if the channel depth is 2·0 m, the specific energy at critical depth is
 - (1) 3·0 m
- (2) 1·33 m
- (3) 2·5 m
- (4) 1.5 m

- 15. Which of the following statements is correct?
 - (1) Centrifugal pumps convert mechanical energy into hydraulic energy by thrust of piston
 - (2) Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal forces
 - (3) Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force
 - (4) Reciprocating pumps convert hydraulic energy into mechanical energy

16. Dynamic viscosity (µ) has the dimensions as

- (1) MLT-2
- (2) $ML^{-1}T^{-1}$
- (3) $ML^{-1}T^{-2}$
- (4) $M^{-1}L^{-1}T^{-1}$

17. The submerged body will be in stable equilibrium if

- (1) The centre of buoyancy B is below the centre of gravity G
- (2) The centre of buoyancy B coincides with G
- (3) The centre of buoyancy B is above the metacentre M
- (4) The centre of buoyancy B is above G

18. Continuity equation deals with the law of conservation of

(1) mass

(2) momentum

(3) energy

(4) None of the above

19. The discharge through a single-acting reciprocating pump is

- (1) $Q = \frac{ALN}{60}$
- $(2) \quad Q = \frac{2ALN}{60}$
- (3) Q = ALN
- (4) Q = 2ALN.

where A = cross-sectional area of cylinder or piston

L = length of stroke

N = r.p.m. of the crank

20. A turbine is called impulse if at the inlet of the turbine

- (1) total energy is only kinetic energy
- (2) total energy is only pressure energy
- (3) total energy is the sum of kinetic energy and pressure energy
- (4) None of the above

21. During suction stroke of a reciprocating pump, the separation may take place

- (1) at the end of suction stroke
- (2) in the middle of suction stroke
- (3) at the beginning of suction stroke
- (4) None of the above

22. The specific speed (N_s) of a pump is given by the expression

 $(1) \quad N_{\rm g} = \frac{N\sqrt{Q}}{H_{\rm m}^{5/4}}$

(2) $N_8 = \frac{N\sqrt{P}}{H^{3/4}}$

 $(3) \quad N_s = \frac{N\sqrt{Q}}{H_m^{3/4}}$

 $(4) \quad N_s = \frac{N\sqrt{P}}{H_m^{5/4}}$

23.	Kaplan turbine is a/an											
	(1)	impulse turbine	(2)	radial flow impulse turbine								
	(3)	axial flow reaction turbine	(4)	radial flow reaction turbine								
24.	A tı	irbine is a device which converts										
	(1)	Hydraulic energy into mechanical e	nergy	,								
	(2)	Mechanical energy into hydraulic e	nergy	·								
	(3)	Kinetic energy into mechanical ene	rgy	*								
	(4)	Electrical energy into mechanical e	nergy									
25.		In the inlet part of the jet impinging on a Pelton bucket, the velocity of whirl V_{w1} is equal to										
	(1)	absolute velocity of jet at inlet V_1	(2)	relative velocity of jet at inlet V_{r1}								
	(3)	zero	(4)	None of the above								
26.	If the turbine has kinetic energy and pressure energy of water at its inlet, then such turbine is known as											
*	(1)	impulse turbine	(2)	reaction turbine								
	(3)	Pelton wheel turbine	(4)	low head turbine								
27.	Whi	ich component is <i>not</i> provided to Pelt	on wl	neel turbine ?								
F	(1)	Penstock (2) Jet	(3)	Casing (4) Draft tube								
28.		artesian aquifer is one where		٠.								
	(1) (2)	water surface under the ground is a										
	(3)	water table serves as upper surface water is under pressure between tw										
	(4)	None of the above	o mi	·								
29.	Lysi	imeter is used to measure	•									
	(1)	Infiltration	(2)	Evaporation								
	(3)	Evapotranspiration	(4)	Vapour pressure								
30.		ton's infiltration capacity is given as										
		$f = f_o + [f_c - f_o] e^{-kt}$	(2)	$f = f_0 - [f_c + f_0] e^{-kt}$								
	(3)	$f = f_o - [f_c - f_o] e^{-kt}$	(4)	$f = f_c + [f_o - f_c] e^{-kt}$								

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

31. Weibull formula is

 $(1) \quad P = \left(\frac{m}{N+1}\right)$

 $(2) \quad P = \left(\frac{m}{N-1}\right) \ ,$

 $(3) \quad P = \left(\frac{N+1}{m}\right)$

 $(4) \quad P = \left(\frac{N-1}{m}\right)$

(where m is order number and N is number of years of record)

32. The term base flow denotes

- (1) delayed groundwater flow reaching a stream
- (2) delayed groundwater and snowmelt reaching a stream
- (3) delayed groundwater and interflow
- (4) the annual minimum flow in a stream

33. Following is **not** the method of apportionment of total cost of multipurpose reservoir:

- (1) Remaining benefit method
- (2) Use of facilities method
- (3) Equal apportionment
- (4) Direct method

34. Owing to the storage effect, the peak of the outflow hydrograph will be smaller than that of the inflow hydrograph. This reduction in peak value is known as

(1) Lag

(2) Attenuation

(3) Routing

(4) Prism storage

35. An IUH is a direct runoff hydrograph

- (1) of one cm magnitude due to rainfall excess of 1-h duration
- (2) that occurs instantaneously due to a rainfall excess of 1-h duration
- (3) of unit rainfall excess precipitating instantaneously over the catchment
- (4) occurring at any instant in long duration

36. The example of aquifuge is

(1) Clay layer

(2) Sandy layer

(3) Solid granite rocks

(4) Silty clay layer

कथ्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

37.		ratio of the quater actually de				e root zone of	the cro	os to the quantity				
	(1)	Water convey			(2)	Water appli	cation e	fficiency				
	- 0)	Water use eff			(4)	None of the						
38.	In h	order strip met	hod of	irrigation, the	e width	of strip is	-					
	(1)		(2)	10 – 20 m	(3)	20 – 30 m	(4)	25 – 30 m				
39.	The	duty of irrigati	ion wa	ter for a given	crop is	maximum						
	(1)	on the field			(2)	at the head	of main	canal				
	(3)	at the head of	water	course	(4)	near the dis	stributar	y				
40.	A channel designed by Lacey's theory has a mean velocity of one m/s. The silt factor											
	is u	nity. The hydra	ulic m	ean radius wi	ll be							
	(1)	2.5 m	(2)	2·0 m	(3)	1·0 m	(4)	0·5 m				
41.	In d	lesign of spillwa	ay whe	$H_e' = H_d$, the	e value	of 'C' is	*					
	(1)	1.00	(2)	1.33	(3)	2-00	(4)	2.20				
42.	Ну	roscopic water	is defi	ned as the	•			,				
	(1)	readily avails	ble wa	ater for the use	e of plar	nts.						
	(2)	water which i	s ads	orbed by the p	articles	of the dry so	il from t	he atmosphere.				
	(3)	total water c	ontent	of the soil wh	en all p	ores are fille	d with w	ater.				
	(4)	water held by	the s	oil under capil	lary act	ion.						
43.	In c	In case of non-availability of space due to topography, the most suitable spillway is										
	(1)	Straight drop	spilly	ay	(2)	Shaft spilly	vay					
	(3)	Chute spillwa	ıy		(4)	Ogee spillw	ay					
44.	The channel after obtaining its section and longitudinal slope will be said to be in											
	(1)	Initial regime	;	• 1	(2)	Permanent	regime					
	(3)	Final regime			(4)	Absolute re	gime					
45.	The	The silt load in the stream does not depend upon										
	(1)	nature of the	soil in	the catchmen	t area							
	(2)	topography of	the c	atchment area								
	(3)	intensity of re	infall			•						
	(4) alignment of dam											
कच्च्य	ा कामार	साठी जागा / SPAC	E FOR	ROUGH WORK	ς		* ,	P.T.O.				

46. Match the design speed recommended for various roads by IRC 86: 1983

List I

(a) Collector roads

List II

(i) 30 kmph

(b) Local roads

- (ii) 80 kmph
- (c) Arterial roads
- (iii) 60 kmph
- (d) Sub-arterial roads
- (iv) 50 kmph

- (a)
- **(b)**
- (c) (d)
- (1) (ii)
- (i)
- (iv) (iii)
- (2) (iii)
- (i)
- (ii) (iv)
- (3) (iv)
- (i)
- (ii) (iii)
- (4) (ii)
- (iv)
- (iii) (i)

47. IRC recommended % values of camber for different types of road surface can be arranged in descending order of following roads:

- a. Water bound macadam road
- b. Thin bituminous surface road
- c. Cement-concrete road
- d. Earth road

Answer Options:

(1) d, b, c, a

(2) c, a, b, d

(3) d, a, b, c

(4) c, b, a, d

48. The expression for the length of a transition curve (Ls) in meters is

 $(1) \quad L_s = \frac{V^3}{CR}$

(2) $L_s = \frac{V^3}{16 \text{ CR}}$

(3) $L_s = \frac{V^3}{24 \text{ CR}}$

(4) $L_s = \frac{V^3}{46.5 \text{ CR}}$

where

C = Rate of change of radial acceleration in m/s³

R = Radius of the circular curve in metres, and

V = Speed of vehicle in kmph

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

49.	The (1)	design s 30 km	3	opted (2)	for design of 40 kmph	of rotaries (3)	s in urban ar 50 kmph	eas of In (4)	dia is 60 kmph	•			
 50.	Mat	ch the fo	ollowing	 :						_			
		List I	-		List II								
	(a)	Stop si	gns		(i) Circ	ular in sh	ape						
	(b)		ay signs		(ii) Equi	lateral tr	iangle with i	ts apex i	pointing upw	ards			
	(c)		limit sig			(ii) Equilateral triangle with its apex pointing upwards(iii) Octagonal shape							
	(d)		ng signs			(iv) Inverted triangle with its apex pointing downwards							
	(4)	(a)	(b)	(c)			-B1C #1011 105	apex por	uting down	arus			
	(1)	(i)	(ii)	(iii	(1. T.)								
	(2)	(ii)	(i)	(iii	3								
	(3)	(iii)	(iv)	(i)	(ii)								
	(4)	(iv)	(iii)	(ii)									
51.	The	dowel b	ars are u	ısed i	n rigid pave	ments for	r						
	(1)		ng tensil			20							
	(2)	resisting bending stresses											
	(3)	resisting shear stresses											
	(4)				m one porti	on to ano	ther						
52.	Group index method of designing flexible pavement is based on												
	a.		ity index			-							
	Ъ.	Shear	strength			٠.,							
	c.	CBR va	alue										
	d.	Percen	t fines										
	Ans	wer Op	tions:										
	(1)	a, b an	d c	(2)	b and c	(3)	a and d	(4)	a, c and d				
53.	Gra	de separ	ation										
	a.	is for c	rossing t	raffic									
	b.			_	and hazard								
	c.	-	er optio										
	d.				and inconve								
	(1)	a and c		(2)	b and c	(3)	a and b	(4)	c and d				

Consider the following statements:

Collision diagram is used to

- study accident patterns
- b. eliminate accidents
- determine remedial measures
- d. make statistical analysis of accidents

Answer Options:

(1) a and b are correct

(2) a and c are correct

c and d are correct.

(4) b and d are correct

55. A bridge has a linear waterway of 150 metres constructed across a stream whose natural linear waterway is 200 metres. If the average flood depth is 3 metres and average flood discharge is 1200 m³/sec, the velocity of approach is

- (1) 2·0 m/sec
- (2) 2.66 m/sec
- (3) 6·0 m/sec
- 8.0 m/sec

56. The width of carriageway required will depend on the intensity and volume of traffic anticipated to use the bridge.

- Except on minor village roads all bridges must provide for at least two lane a. width
- The minimum width of carriageway is 4.25 m for one lane bridge b.
- The minimum width of carriageway is 3.75 m for one lane bridge C.
- The minimum width of carriageway is 7.5 m for two lane bridge

Which of the statements given above is/are incorrect?

- · (1) Only a
- (2) Only a and c (3) Only a, c and d
- (4) Only c

Which of the following shall be considered while designing high level bridges for 57. buoyancy effect?

- Full buoyancy for the superstructure
- (2) Full buoyancy for the abutments
- Buoyancy forces due to submerged part of the substructure and foundation (3)
- Partial buoyancy for superstructure

The normal depth of scour for alluvial rivers is determined by Lacey's formula 58.

 $(1) \quad \sqrt{0.475} \left(\frac{f}{Q} \right)$

 $(2) \quad 0.475 \left(\frac{\mathbf{Q}}{\mathbf{f}}\right)^3$

(3) $0.475^3 \sqrt{\frac{f}{Q}}$

(4) $0.475^3 \sqrt{\frac{Q}{f}}$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

59.	Roll		_				the spar		72.0451	M24 0 0.
	(1)	18 to 2	24 m	(2)	12 to 18	8 m	(3)	6 to 12 m	(4)	Up to 6 m
60.				_		con		flow at nose		
	(1)	1·50 d		(2)	1∙75 d		(3)	2·00 d	(4)	2·75 d
61.	For	high le	vel bridg	es, the	freeboa	ard s	hould <i>no</i>	ot be less tha	in	.A.5
	(1)	200 m	ım	(2)	400 mr	n	(3)	600 mm	(4)	800 mm
62.		oer IRC or bridg	•	tions,	the mi	nimu	ım cemei	nt content in	concrete	e isfo
	(1)					•	(2)	350 kg/m^3		
	(3)	360 k	g/m ³				(4)	370 kg/m ³		
63.						the i	impact fa	actor, for R.C	C.C. brid	ges having span
	mor (1)		45 metre		0.088		(3)	0.098	(4)	0.154
	(1)	0 010		(2)	0 000		(0)	0 030	(4)	0 104
	3371	ich natt	ern of th	e drilli	ng is ne	ot us	sed for sh			
64.										
64.	(1)	Centr	al wedge	cut			(2)	End wedge		•
64.		Centr		cut			(2)	End wedge Alternate v		t
64.	(1) (3) From	Centr Vertion m the e	al wedge al wedge	cut cut	of view,	tuni	. (4)	Alternate v	vedge cu	depth of open cu
	(1) (3) From	Centr Vertion on the e	al wedge al wedge	cut cut point o	of view, 12 m	tuni	. (4)	Alternate v	vedge cu	
	(1) (3) From is m (1)	Centr Vertice m the entered that for the	al wedge al wedge	cut cut point o		tuni	(4) nelling is	Alternate v	hen the	depth of open cu
65.	(1) (3) From is m (1)	Centr Vertice m the entered that for the	al wedge cal wedge conomy p n following	cut cut point o			(4) nelling is	Alternate v	hen the	depth of open cu
65.	(1) (3) From is m (1)	Centr Vertice m the enter that 6 m	al wedge cal wedge conomy p n following	cut cut point o	12 m		(4) nelling is (3) List II	Alternate v	vedge cut when the (4)	depth of open cu
65.	(1) (3) From is m (1)	Centr Vertice m the endore that 6 m	al wedge cal wedge conomy p n following	cut cut point o (2)	12 m	(i)	(4) nelling is (3) List II Needing	Alternate v advisable w 18 m	then the (4)	depth of open cu
65.	(1) (3) From is m (1) Mat	Centr Vertice m the endore that 6 m ch the : List I Firm	al wedge cal wedge conomy n following ground	cut cut point o (2)	12 m	(i) (ii)	(4) nelling is (3) List II Needing Needing	Alternate v advisable w 18 m	then the (4)	depth of open cu
65.	(1) (3) From (1) Mat (a) (b)	Centr Vertice m the endore that 6 m ch the : List I Firm	al wedge cal wedge conomy following ground ing groun upporting	cut cut point o (2)	12 m	(i) (ii) (iii) (iv)	(4) nelling is (3) List II Needing Needing No need	Alternate v s advisable w 18 m sinstant supporter of instant supporter	wedge cut when the (4) port all re port for re	depth of open cu
65.	(1) (3) From (1) Mat (a) (b) (c)	Centr Vertice m the enter that 6 m Ich the : List I Firm Runni Self-s	al wedge cal wedge conomy following ground ing groun upporting	cut cut point o (2)	12 m	(i) (ii) (iii) (iv)	(4) nelling is (3) List II Needing Needing No need Soil star	Alternate v s advisable w 18 m sinstant supporter of instant supporter	wedge cut when the (4) port all re port for re	depth of open cu 24 m ound oof
65.	(1) (3) From (1) Mat (a) (b) (c)	Centr Vertice m the entered that is 6 m I ch the : Ch the	al wedge cal wedge conomy following ground ing groun upporting round	cut cut cut cut cut cut	12 m	(i) (ii) (iii) (iv)	(4) nelling is (3) List II Needing Needing No need Soil star	Alternate v s advisable w 18 m sinstant supporter of instant supporter	wedge cut when the (4) port all re port for re	depth of open cu 24 m ound oof
65.	(1) (3) From is m (1) Mat (a) (b) (c) (d)	Centr Vertice m the enter that 6 m Ich the : List I Firm Runni Self-si Soft g	al wedge cal wedge conomy following ground ing groun upporting round (b)	cut	12 m	(i) (ii) (iii) (iv)	(4) nelling is (3) List II Needing Needing No need Soil star	Alternate v s advisable w 18 m sinstant supporter of instant supporter	wedge cut when the (4) port all re port for r	depth of open cu 24 m ound oof
65.	(1) (3) From is m (1) Mat (a) (b) (c) (d) (1)	Centry Vertice m the earth and for the state of the stat	al wedge cal wedge conomy following ground ing groun upporting round (b) (ii)	cut	12 m (d) (iv) (iii)	(i) (ii) (iii) (iv)	(4) nelling is (3) List II Needing Needing No need Soil star	Alternate v s advisable w 18 m sinstant supporter of instant supporter	wedge cut when the (4) port all re port for r	depth of open cu 24 m ound oof

67.			ne followi tunnels		nods is s	uitable	e for	the constructi	on of l	arge-sized railway		
	(1)	Forep	oling met	hod			(2)	American me	ethod			
	(3)	Case	method				(4)	Full face me	thod			
68.	Mat	ch the	List I (Sh	ape of T	(unnel) v	vith Li	ist II	(Characterist	ics):			
		List I					Lis	t II				
	(a) Circular section					(i)	Pro	vides more wo	rking	space		
	(b)	Horse	shoe sect	ion		(ii)	Provides greatest cross-sectional area for least perimeter					
	(c) Egg shape						Ver	tical sides wit	h flat f	loor		
	(d)	Segme	ental cros	s-sectio	n	(iv)		vides least cro bottom	ss-sect	ion area at		
		(a)	(b)	(c)	(d)							
	(1)	(ii)	(i)	(iv)	(iii)							
	(2)	(i)	(ii)	(iii)	(iv)							
	(3)	(iii)	(iv)	(i)	(ii)			· ·				
	(4)	(iv)	(iii)	(ii)	(i)							
39.	In order to maintain the desired shape of the tunnel, the cross section of the tunnel must be checked at a regular interval of											
	(1)	2 m to	3 m	(2) 4	m to 6 n	a .	(3)	5 m to 7 m	(4)	8 m to 15 m		
70.	Asse	rtion (A			attacking construc				structi	on of tunnels are		
	Reas	soning (locations wher orter than dee		ontal approach to cal shafts.		
	(1)	Both (A) and (R) are tr	ue and (R) is th	ne co	rrect explanat	ion of	A		
	(2)	(A) is t	rue and ((R) is fa	lse .							
	(3)	(A) is i	false and	(R) is tı	ue							
	(4)	Both (A) and (R) are fa	lse							
ग्च्या	कामार	ाठी जागा	/ SPACE	FOR RO	UGH WC	RK		¥				

71.		nch of the following methods is gener utilation of tunnels?	ally co	onsidered the most efficient system for							
	(1)	Driving a shaft through the tunnel									
•	(2)	Driving a drift through the top por	tion								
	(3)	Blow in method									
	(4) Combination of blowing and exhausting										
72.		case of long tunnels, the drainage sys	tem co	onsists of sump wells which are located							
	(1)	50 m to 100 m	(2)	100 m to 200 m							
	(3)	200 m to 300 m	(4)	300 m to 500 m							
73.	Air	valves or Air-relief valves are provid	ed at	,							
	(1)	Summits	(2)	Valleys							
	(3)	All joints	(4)	None of the above							
74.	Whi	ich of the following treatments reduc	es sali	nity of water ?							
	a.	Alum coagulation, flocculation and	settlir	ng .							
	b.	Carbon filtration									
	c.	Reverse osmosis									
	d.	Electro dialysis									
	Ans	swer Options :									
	(1)	Only a and b									
	(2)	Only b and c									
	(3)	Only c and d									
	(4)	Only b, c and d		•							
75.	The	e minimum velocity of flow in a sewer	shoul	d be ideally							
	(1)	equal to self-cleansing velocity		*							
	(2)	equal to non-scouring velocity									
	(3)	less than self-cleansing velocity									
	(4)	more than non-scouring velocity									
कच्च्या	कामार	साठी जागा / SPACE FOR ROUGH WORK		P.T.O.							

76.	Sewer lines having difference of more than 600 mm in the water lines and invert										
		el of two sewers are connected with a									
	(1)	Siphon	(2)	Manhole							
	(3)	Inspection chamber	(4)	Drop manhole							
77.	Gen	nerally the period chosen for a standa	rd B.C	D.D. test is							
	(1)	1 day	(2)	5 days							
	(3)	8 days	(4)	20 days							
78.	For rapid sand filter, sand should have the following specifications:										
	(1)	(1) Effective size $0.1 - 0.5 \text{ mm}$									
		Uniformity co-efficient = 2 to 4									
	(2)	Effective size $0.2 - 0.5 \text{ mm}$		·							
		Uniformity co-efficient = 2 to 3									
· .	(3)	Effective size $0.45 - 0.7$ mm		•							
		Uniformity co-efficient = 1.3 to 1.7									
	(4)	Effective size $0.7 - 0.9 \text{ mm}$		÷							
		Uniformity co-efficient = 1 to 5									
79.	If waste water is disposed off into a natural stream, the maximum dissolved oxygen										
	dep	letion occurs in the zone of									
	(1)	degradation	(2)	active decomposition							
	(3)	clearer water	(4)	recovery							
80.	In a	sedimentation tank design, surface o	overfl	ow rate (S.O.R.) is calculated as							
	(1)	Surface area/velocity of water Q/V/V	7 .								
	(2)	Discharge/plan area Q/B×L									
	(3)	Volume of tank/discharge V/Q									
	(4)	Surface area/settling velocity of the	parti	cle A/V _g							
81.	The	waste water treatment unit which is	insta	alled to remove floating substances like							
	grea	ase, oil, fats, waxes, etc. is									
	(1)	skimming tank	(2)	detritus tank							
	(3)	sedimentation tank	(4)	None of the above							
	कामार	साठी जागा / SPACE FOR ROUGH WORK	_								

- 82. An alidade in which one edge is bevelled is called as
 - (1) Soft edge

(2) Fiducial edge

(3) Telescopic edge

(4) Swivel edge

- 83. Contour interval is the
 - (1) vertical distance between two consecutive contours
 - (2) horizontal distance between two consecutive contours
 - (3) vertical distance between two points on the same contour
 - (4) horizontal distance between two points on the same contour
- 84. The length of a simple circular curve of radices R metres and intersection angle D degrees will be
 - (1) $R.\frac{D}{2}$

(2) $\frac{\pi}{180}$. R. $\frac{D}{2}$

(3) $\frac{\pi}{180}$. R. $\frac{D}{4}$

- (4) $\frac{\pi}{180}$. R. D
- 85. The height of an instrument is the
 - (1) Height of the instrument above the ground
 - (2) Height between ground and telescope
 - (3) Elevation of the plane of sight
 - (4) Reduced level of station
- 86. If a tachometer is fitted with an anallactic lens, then,
 - (1) Additive constant is 100 and multiplying constant is zero
 - (2) Multiplying constant is 100 and additive constant is zero
 - (3) Both additive and multiplying constants are 100
 - (4) Both multiplying and additive constants are 50
- 87. Following is constant for a contour map:
 - (1) Horizontal equivalent
 - (2) Benchmark
 - (3) Contour interval
 - (4) Topography

88. The combined correction due to curvature and refraction is given by

(1) $0.095 d^2$

(2) 0·01122 d²

(3) 0.06735 d²

(4) $0.572 d^2$

(where d is in km)

89. Reiteration method is also called as

(1) Method of series

(2) Repetition method

(3) Direction method

(4) Both (1) and (3)

90. The expression for sensitivity of the bubble tube (α) can be taken as, _____

where

n = No. of divisions

s = Net staff reading

d = Distance

R = Radius of curvature

l =Length of one division

- (1) $\alpha = \frac{s}{nd} \times 206265$ seconds
- (2) $\alpha = \frac{d}{ns} \times 206265$ seconds

(3) $\alpha = \frac{nlD}{R}$ radians

(4) $\alpha = \frac{s}{nR} \cdot \frac{l}{D}$

91. Closing error in theodolite traverse survey is given as

- (1) $e = \sqrt{(\sum L^2 + \sum D^2)^2}$
- (2) $e = \sqrt{(\sum L)^2 + (\sum D)^2}$

(3) $e = \sqrt{\sum L + \sum D}$

(4) $e = \sqrt{(\sum L)^2 - (\sum D)^2}$

92. If the length of 16 mm diameter bar is 10 m, then its weight is

(1) 16.5 kg

(2) 16·9 kg

(3) 15·8 kg

(4) 16·2 kg

93. Security deposit is

- deposited at the time of filling tender
- (2) deposited by the contractor whose tender is accepted
- (3) deposited at the time of opening tenders
- (4) deposited for fair competition

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

94.	In order to compute the quantities of R.C.C. beams, lengths of beams are measured to the									
	(1)	nearest millimetre	(2)	nearest half centimetre						
	(3)	nearest centimetre	(4)	nearest inch						
95.	In c	ase of which type of contract, unbal	lanced t	ender is <i>not</i> possible?						
	(1)	Open tender	(2)	Item rate contract						
	(3)	Percentage rate contract	(4)	Unit price contract						
96.	Which of the following types of contract is used for execution of large works by public bodies or the government?									
	(1)	Item rate contract	(2)	Percentage rate contract						
	(3)	Cost plus type contract	(4)	Target contract						
97.	Assertion (A): Earnest money deposit is usually 1% to 2% of the total estimated cost of the work. Reasoning (R): Earnest money deposit prevents unnecessary and unhealth.									
		competition.	posic pi							
	(1)	Both (A) and (R) are true	(2)	Both (A) and (R) are false						
	(3)	(A) is true and (R) is false	(4)	(A) is false and (R) is true						
98.		nation for cement requirement in to per structure) recommended by C.B		For four-storey R.C.C. framed building						
	(1)	0·153 A + 0·57	(2)	0·145 A + 0·54						
	(3)	0·182 A – 0·35	(4)	2·26 A + 66·8						
	(wh	ere A is plinth area in sq. mt)								
99.	While submitting tender by three envelope method, which envelope contains rates/amount offered by the tenderer?									
	(1)	Envelop: 3	(2)	Envelope nos : 1 and 2						
	(3)	Envelope: 1	(4)	None of the above						
100.	The is	length of L-bend for Tor steel to b	e provid	led at each end of the reinforcing bars						
	(1)	12 times diameter	(2)	6 times diameter						
	(3)	3 times diameter	(4)	150 mm						
	1479.7									
4,004	यगनार	गाठी जागा / SPACE FOR ROUGH WORK	(P.T.O.						

सूचना - (पृष्ठ 1 वरून पुढे.....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यितिरक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/र्किवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमना प्र9न

	۰۰.۶۰۰۱	216-1
Pick out the	correct word to fill in the blank:	
0.37 001	*:	
Q. No. 201.	I congratulate you	your grai

(1) for (2) at
(3) on (4) about
ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क्र. 201. 1 2 • 4

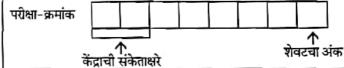
अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

वेळ : 2 (दोन) तास

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - I


स्थापत्य अभियांत्रिकी पेपर - 1

एकुण प्रश्न : 100

एकुण गुण : 200

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैको सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- ं उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- ्रप्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच '' उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस प्रविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील

ताकीद

तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल्प

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

नुष उघड सील 40 सूचनेविना पर्यवेक्षकांच्या

A

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

1.	For the formwork design, IS-456-2000 suggested the deviation from specified dimensions of cross section of columns and beams at										
	(1)	+12 mm, -6 mm	(2)	+50 mm , -12 mm							
	(3)	+25 mm, -25 mm	(4)	+12 mm , -12 mm							
2.		e compressive strength of concr	rete increa	ses, then tensile strength is also increases, but at							
	(1)	Increasing rate	(2)	Decreasing rate							
	(3)	Constant rate	(4)	Exponential increasing rate							
3.	The brick piece obtained by cutting a triangular portion of the brick such that half a headers and half a stretcher are obtained on adjoining cut faces is called as:										
	(1)	Queen closer	(2)	Mitred closer							
	(3)	King closer	(4)	Three-Quarter Bat							
4.				cement content for moderate exposure used in respectively, as per IS-456-2000.							
	(1)	0.60; 220 kg/m ³	(2)	0.60; 240 kg/m ³							
	(3)	0.50; 250 kg/m ³	(4)	0.55 ; 260 kg/m^3							
5.	Whi	ich of the following tests is not	a test for	evaluating workability of concrete?							
	(1)	Slump Test	(2)	Flow Test							
	(3)	Compacting factor Test	(4)	Le-Chatellier Test							
6.	A w	vell caisson is a foundation fa	cilating s	tructure sunk in the ground or water ; which							
	(1)	Open at top as well as at bott	tom.								
	(2)	Open at top and closed at bo	ttom.								
	(3)	Open at bottom and closed a	t top.								
	(4)	Closed at top as well as at bo	ottom.								

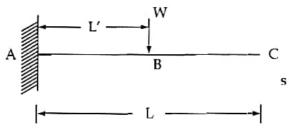
7.	One of the following is not a principle related to thermal insulation:												
	(1)	Thermal resista	nce is	directly pr	oporti	onal t	o thickness of	a materia	al.				
	(2)	Provision of air	gap I	olays an im	portar	nt role	in thermal in	sulation.					
	(3)	Transfer of hea	t from	outside to	inside	incre	eases.						
	(4)	Thermal resista	nce of	a building	depe	nds or	n orientation a	lso.					
8.	wat	are provided as a protective coatings to walls at its top to prevent seepage of water.											
	(1)	Corbels	(2)	Cornica		(3)	Copings	(4)	Floating				
9.		o had discovere	d dire	ect relation	ship	betwe	een water-cen	nent rati	o and strength o	- of			
	(1)	Jon Abraham			(2)	Abr	aham Lincoln						
	(3)	Duff Abrams			(4)	Albe	ert Pinto						
10.	One	One of the following measure could not reduce or eliminate plastic shrinkage cracks :											
	(1) Erect temporary wind breakers.												
	(2)	(2) Concrete should be poured in layers.											
	(3)	Erect temporary	roof.	0									
	(4)	Reduce the time	e betw	een placing	g and	finish	ing.						
11.	How much is the Carbon Content (%) in hard-steel ?												
	(1)	0.5 - 0.8	(2)	0.8 - 1.5		(3)	0.3 - 0.5	(4)	0.15 - 0.3				
12.	Fire load, a fire risk criteria to classify occupancies, for a building having an area of 100 m ² with combustible material of 1,000 kg having calorific value of 4,000 kcal/kg will be:												
	(1)	4,00,000 kcal/n	n^2		(2)	40,0	00 kcal/m²						
	(3)	250 kcal/m ²			(4)	25 k	cal/m²						

कच्या कामासाठी जागा/SPACE FOR ROUGH WORK

13.		shear force an ies a :	d bendi	ng momen	t are	zero a	t the free end	of a car	ntilever beam,	if it			
	(1)	Point load at	the free	end.									
	(2)	Point load at	the mide	ile of its le	ngth.								
	(3)	Uniformly dis	stributed	load over	the w	hole l	ength.						
	(4)	None of the a	bove.										
14.		A steel rod of c/s area 100 mm ² and 1 m long is subjected to a tensile force of 40 kN. What is the total elongation of the rod? If modulus of elasticity of steel is 200 GPa.											
	(1)	0.5 mm	(2)	0.7 mm		(3)	1.2 mm	(4)	2.0 mm				
15.	A si	A simply supported beam carries couple at a point on its span, the shear force :											
	(1)	Varies by cub	ic law		(2)	Vari	es by paraboli	law					
	(3)	Varies linearl	y		(4)	ls u	niform through	nout					
16.	Euler buckling load for one end fixed and the other hinged is given by :												
	(1)	$\frac{\pi^2 EI}{l^2}$	(2)	$\frac{2\pi^2 EI}{l^2}$		(3)	$\frac{4\pi^2EI}{l^2}$	(4)	$\frac{\pi^2 El}{4l^2}$				
17.	150	oint in a strai MPa (tensile) a ar stress in the	nd 50 M	Pa (compre				• •					
	(1)	50 MPa	(2)	100 MPa		(3)	150 MPa	(4)	200 MPa				
18.	Euler's formula for buckling of column does not hold good if slenderness ratio												
	$\left(\frac{\text{le}}{K}\right)$) is	for mil	d steel colu	ımn.								
	(1)	Less than 80			(2)	Gre	ater than 90						
	(3)	120 - 160			(4)	90 -	120						

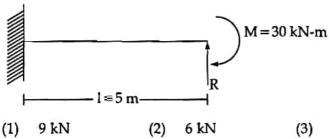
- Maximum deflection of a simply supported beam with the total uniformly distributed load 19. 'W' is:
 - (1)
- (2) $\frac{5}{384} \frac{\text{Wl}^3}{\text{El}}$ (3) $\frac{\text{Wl}^3}{48\text{El}}$
- If a prismatic bar of uniform c/s 'A' and length 'L' is suspended from top, then the elongation of bar due to its self weight only is _____. Where, E is modulus of elasticity of bar material and γ is the density of bar.
 - (1) $\frac{\gamma L^2}{2E}$
- $(2) \quad \frac{\gamma L^2}{3E} \qquad (3) \quad \frac{\gamma L^2}{5E}$

- The relation governing the simple bending of beam is: 21.

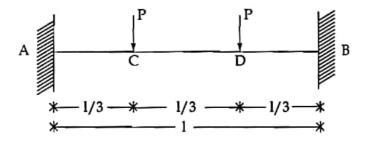

- (1) $\frac{\sigma}{y} = \frac{M}{E} = \frac{1}{R}$ (2) $\frac{\sigma}{y} = \frac{M}{R} = \frac{E}{I}$ (3) $\frac{\sigma}{E} = \frac{M}{I} = \frac{y}{R}$ (4) $\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}$
- A steel bar of 5 mm is heated from 15° to 40°C and it is free to expand. The bar will 22. induce _
 - (1) No stress

(2)Shear stress

(3)Tensile stress

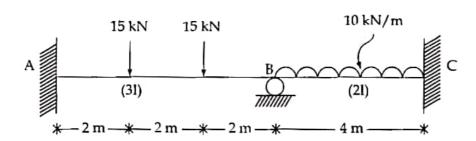

- Compressive stress (4)
- A simply supported beam AB of span 10 m carries a point load W = 10 kN at C such that 23. AC=3 m and BC=7 m, maximum deflection occur _____
 - at C

- at centre of span (2)
- (3)between A and C
- (4)between B and C
- Which of the following is true in the following figure? 24.

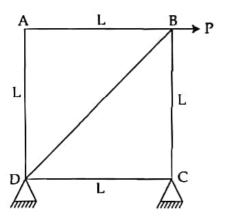


- (1)Deflection at C = deflection at B + $\theta_R(L - L')$
- Deflection at $C = \frac{L}{L'} \times \text{ deflection at B}$ (2)
- Deflection at C = deflection at $B + \theta_C(L L')$ (3)
- (4)Both (1) and (3)

- 25. A statically indeterminate structure is the one which:
 - Cannot be analyzed at all
 - (2)Can be analyzed using equations of statics only
 - Can be analyzed using equations of statics and compatibility equations (3)
 - Can be analyzed using equations of compatibility only (4)
- In the propped cantilever as shown in figure, the value of propped reaction 'R' will be : 26.


- 3 kN
- 2 kN
- 27. A fixed beam AB of length 'I' having constant flexural rigidity EI carries two loads P at its third points C and D as shown in figure.

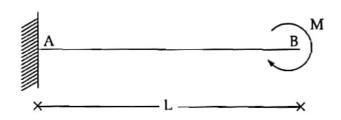
Numerically, maximum bending moment will occur:


- at C and at D and will be equal to $\frac{2}{9}$ PI
- between C and D and will be equal to $\frac{Pl}{a}$ (2)
- at A and at B and will be equal to $\frac{2}{9}$ Pl (3)
- between A and C and also between B and D and will be equal to $\frac{Pl}{9}$ (4)

- 28. Maximum deflection for a simply supported beam subjected to udl 'W' throughout span 'l' is:
 - (1) $\frac{Wl^3}{48El}$
- (2) $\frac{W1^4}{48E}$
- (3) $\frac{5}{384} \frac{\text{Wl}^3}{\text{Fl}}$
- (4) $\frac{5}{384} \frac{\text{Wl}^4}{\text{El}}$
- 29. The moment required to rotate the near end of a prismatic beam through a unit angle without translation, the far end being simply supported, is given by:
 - (1) $\frac{3E1}{1}$
- (2) $\frac{4EI}{I}$
- (3) $\frac{2EI}{I}$
- (4) $\frac{El}{l}$
- 30. A two hinged semi-circular arch of radius R carries a concentrated load W at the crown. Assuming uniform flexural rigidity, the horizontal thrust at each support will be:
 - (1) $\frac{W}{2\pi}$
- (2) $\frac{W}{\pi}$
- (3) $\frac{4}{3} \cdot \frac{WF}{T}$
- (4) $\frac{W}{2}$
- 31. A two span continuous beam ABC is as shown in figure below. The distribution factors at joint B are:

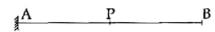
- (1) 0.4, 0.6
- (2) 0.6, 0.4
- (3) 0.5, 0.5
- (4) 0.55, 0.45
- 32. The deflection at the free end of a cantilever of rectangular cross-section due to certain loading is 0.8 cm. If the depth of the section is doubled keeping the width same, then the deflection at the free end due to the same loading will be:
 - (1) 0.1 cm
- (2) 0.4 cm
- (3) 0.8 cm
- (4) 1.6 cm

33. What is the force in member AB of the pin-jointed frame as shown below?


(1) P (tension)

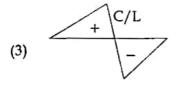
(2) P (compression)

(3) $\frac{P}{\sqrt{2}}$ (compression)

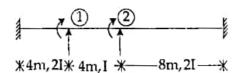

- (4) Zero
- 34. A cantilever beam AB of span 'L' is subjected to a moment 'M' at the free end as shown in figure. What is the slope and deflection at free end B?

Consider same c/s and material. (i.e, EI is same)

- (1) $\frac{ML}{EI}$, $\frac{ML^2}{2EI}$
- $(2) \quad \frac{M}{LEI}, \frac{ML^2}{EI}$
- (3) $\frac{2ML}{EI}$, $\frac{2ML^2}{EI}$
- (4) $\frac{ML}{Fl}$, $\frac{2ML^2}{Fl}$


35. Influence line diagram for B.M. at P for cantilever as shown is:

36. Displacement coordinators for the beam are as shown in figure. The flexibility matrix is given by :


$$(1) \quad \frac{1}{E_1} \begin{bmatrix} 64/3 & -8 \\ -8 & 64 \end{bmatrix}$$

(2)
$$\frac{1}{E_1} \begin{bmatrix} 64/3 & 8 \\ 8 & -64/3 \end{bmatrix}$$

(3)
$$\frac{1}{E_1} \begin{bmatrix} 64/3 & 8 \\ 8 & 4 \end{bmatrix}$$

(4)
$$\frac{1}{E_1} \begin{bmatrix} 4 & -8 \\ -8 & 64/3 \end{bmatrix}$$

37. Displacement coordinators for the beam are as shown in figure. The stiffness matrix is given by:

William Hilli

(2)
$$E_1 \begin{vmatrix} 3 & -0.5 \\ -0.5 & 2 \end{vmatrix}$$

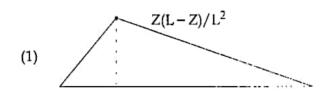
(3)
$$E_1\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

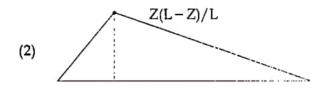
 $(1) \quad E_1 \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}$

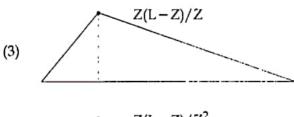
(4)
$$E_1 \begin{vmatrix} 3 & 0.5 \\ 0.5 & 2 \end{vmatrix}$$

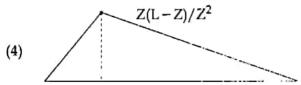
- 38. A parabolic three hinged arch ABC is supporting Uniformly Distributed Load of 500 N/m over its entire span of 100 m. The center point 'B' is vertically 25 m high from supports A and C. The reactions shall be ______.
 - (1) 50 kN horizontal and vertical reactions at each support
 - (2) 25 kN horizontal and 50 kN vertical reaction at each support
 - (3) 50 kN horizontal and 25 kN vertical reaction at each support
 - (4) 25 kN horizontal and vertical reactions at each support
- 39. The stiffness matrix of a beam is given as:

$$K \times \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix}$$

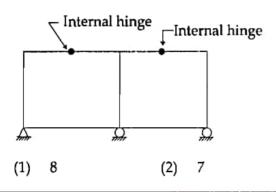

Calculate the flexibility matrix.


Flexibility matrix will be ______.

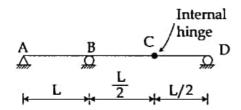

 $(1) \quad \frac{K}{44} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$


- $(2) \quad \frac{K}{44} \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix}$
- (3) $\frac{1}{44 \text{ K}} \begin{bmatrix} 12 & -4 \\ -4 & 5 \end{bmatrix}$
- (4) $\frac{1}{44 \text{ K}} \begin{bmatrix} 5 & -4 \\ -4 & 12 \end{bmatrix}$

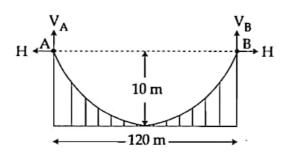
40. For a simply supported beam AB of span L with point load W at point C, Z m from left support, ILD for bending moment at $C(M_c)$ is :



- 41. The cable and arch are subjected to axial forces respectively as, ______
 - (1) Tensile and Compressive
- (2) Compressive and Tensile
- (3) Tensile and Tensile
- (4) Compressive and Compressive
- **42.** Degree of static indeterminancy for the frame shown below is



(3) 6


(4) 5

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

43. For the continuous beam shown in figure, the ILD for reaction at D is ______.

- (1) $A \stackrel{\downarrow}{B} C \stackrel{\downarrow}{D}$
- (2) $A \stackrel{\qquad \qquad \qquad \qquad }{\longrightarrow} D$
- $(3) \qquad A \qquad B \qquad C \qquad D$
- (4) $A \stackrel{1}{\longmapsto} 1/2 \stackrel{1}{\triangle} 3/4 \stackrel{1}{\triangle} \stackrel{1}{\downarrow} \stackrel{1}{\triangle}$
- 44. A cable of span 120 m and dip 10 m carries a load of 6 kN/m of horizontal span. The maximum tension in the cable is ______.

- (1) 1238.42 kN
- (2) 1138.42 kN
- (3) 1038.42 kN
- (4) 1338.42 kN

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

- 45. For simply supported beam of span 10 m, Influence line diagram is drawn for bending moment at a section 4 m from left hand support. The maximum bending moment at the section due to moving point load of 160 kN is equal to ______.
 - (1) 640 kN-m
- (2) 960 kN-m
- (3) 384 kN-m
- (4) 400 kN-m

- 46. Spot welding is used when two plates are placed:
 - (1) One below the other
- (2) One butting against the other
- (3) One next to other
- (4) At right angles to each other
- 47. An angle section can be used as purlin when slope of the roof truss is :
 - (1) between 40° and 70°
- (2) less than 30°

(3) greater than 30°

- (4) less than 45°
- 48. The purpose of stiffness in a plate girder is to:
 - (1) Prevent buckling of web
 - (2) Increase moment carrying capacity of the girder
 - (3) Reduce the shear stress
 - (4) Take care of bearing stress
- 49. The anchor bolts are provided to check the:
 - (1) settlement of foundation
- (2) punching shear of base plate
- (3) uplift of base plate
- (4) moment of base plate
- 50. The economical range of spacing of roof trusses is:
 - (1) $\frac{1}{2}$ to $\frac{1}{3}$ of span
- (2) $\frac{1}{2}$ to $\frac{1}{4}$ of span

- (3) $\frac{1}{4}$ to $\frac{1}{6}$ of span
- (4) $\frac{1}{3}$ to $\frac{1}{5}$ of span

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

51.	The behaviour of a beam column cross section is expressed by which of the following relationship?										
	(1)	Moment - Curvatur	e	(2)	Moment - Axial compression						
	(3)	Axial compression -	Curvature	(4)	Mor	nent - Curvatu	re - Axia	al compression			
52.	The plate used as a connecting piece at the intersection of two or more members in a roof truss is called as :										
	(1)	Template (2)	Gusset pl	late	(3)	Base plate	(4)	Shoe plate			
53.	The	The thickness of the base plate is determined from the :									
	(1)	Flexural strength of the plate.									
	(2)	Shear strength of th	e plate.								
	(3)	_									
	(4)	Punching criteria.									
54.	The metal added at the joint while welding is known as										
	(1)	weld metal		(2)	fille	•					
	(3)	fillet metal		(4)	all t	he above are co	orrect				
55.	Which of the following statement is correct for reducing web buckling due to diagonal compression?										
	(1)	(1) Not providing web stiffners to increase shear strength									
	(2)	2) Providing web stiffner to reduce shear strength									
	(3)	3) Increasing depth to thickness ratio									
	(4)	Reducing depth to	thickness rat	io							
56.	The design shear stress for which of the following weld types is same as that for fillet welds?										
	(1)	Plug weld only		(2)	Slot	weld only					
	(3)	Plug and Slot weld	only	(4)	Slot	and Butt weld	only				
कच्च	याका	मासाठी जागा/SPACE	FOR ROUG	H WC	rk			P.T.O.			

A

57. A column c/s 300 mm × 400 mm, 2250 mm long fixed at one end and free at other end. The ratio of effective length to the least lateral dimension is :

16

- (1) 7.5
- (2) 15
- (3) 11.25
- (4) 9

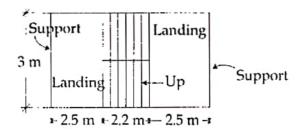
58. In design of slab, as per IS-456, what should be minimum percent of distribution steel if Fe 415 reinforcement is used ?

- (1) 0.12% of total cross section
- (2) 0.15% of total cross section
- (3) 0.50% of total cross section
- (4) 1% of total cross section

59. What is the maximum diameter of main reinforcement used in the slab of overall thickness 160 mm as per IS 456-2000?

- (I) 10 mm
- (2) 12 mm
- (3) 16 mm
- (4) 20 mm

60. For the design of staircase, self weight of waist slab is calculated as _____. Where, T = Tread, R = Riser and D = depth of waist slab, γ_c = density of R.C.C.


(1) γ_c · D

(2) $\gamma_c \cdot D \cdot \left(\frac{T}{\sqrt{R^2 + T^2}} \right)$

 $(3) \quad \gamma_c \cdot \frac{\sqrt{T^2 + R^2}}{T}$

 $(4) \qquad \gamma_{c} \cdot D \cdot \frac{\sqrt{T^{2} + R^{2}}}{T}$

61. What is the effective span of staircase supported at each end by edge of the landing slab, which spans parallel, with the risers, if width of both landings is 2.5 m and going of stair is 2.2 m (see fig.):

- (1) 7.2 m
- (2) 4.7 m
- (3) 4.2 m
- (4) 2.2 m

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

- 62. In the design of retaining wall, both, active earth pressure and passive earth pressure is considered due to soil available on both sides (with different heights) of R.C.C. retaining wall. If angle of repose, $\phi = 30^{\circ}$, then what will be the relation between coefficient of active earth pressure (K_a) and passive earth pressure (K_p)?
 - (1) $K_a = \frac{1}{2}K_p$

- (2) $K_a = 3K_p$ (3) $K_a = 9K_p$ (4) $K_a = \frac{1}{9}K_p$
- What is the effective span of staircase, supported at each end by landing spanning parallel 63. with the risers, if the width of landing is 2.5 m, width of starting passage is 1.5 m and going of the stair is 2.2 m?
 - (1)6.2 m
- (2)4.2 m
- 3.95 m (3)
- (4)4.5 m
- The minimum area of tension reinforcement shall be not less than ______ for design of 64. beam.

- (2) $\frac{0.85}{f_y}$ bd (3) $\frac{0.67}{f_y}$ bD (4) $\frac{0.76}{f_y}$ bd
- For high yield strength deformed bars of grade Fe 500, the permissible stress in direct tension and flexure tension shall be _____ used in working stress method.
 - $0.87 f_{\nu}$
- (2) $0.67 f_y$
- (3) $0.55 f_y$
- $0.48 f_{y}$
- If, in any given plane, one end of the column is unrestrained, its unsupported length 'I' shall _____. Where 'b' is width and 'D' is depth of cross section in plane under consideration.
 - (1)
- (2) $\frac{100 \text{ b}^2}{\text{D}}$ (3) $\frac{100 \text{ D}}{\text{b}}$
- (4) $\frac{100 \text{ D}^2}{.}$
- If top of earth retained is horizontal, the coefficient of passive earth pressure for retaining 67. wall become:
 - (1) $C\rho = \frac{1 \sin \phi}{1 + \sin \phi}$

(2) $C\rho = \frac{1 + \sin \phi}{1 - \sin \phi}$

(3) $C\rho = \frac{\sin \phi - 1}{\sin \phi + 1}$

(4) $C\rho = \frac{\sin \phi + 1}{\sin \phi - 1}$

- 68. A concrete beam is post-tensioned by a cable carrying an initial stress of 1000 N/mm², the slip at jacking end was observed to be 5 mm, modulus of steel is 210 kN/mm² and span of beam is 30 m; what is % of loss of stress due to anchorage?
 - (1) 3.5%
- (2) 2.5%
- (3) 1.5%
- (4) 4.0%

- 69. The rate of increase of stress is large in case of :
 - (1) Bonded beams

- (2) Unbonded beams
- (3) Tensioned beams
- (4) Anchorage beams
- 70. A simply supported prestressed concrete beam of span 10 m is subjected to a point load of 10 kN at centre. Prestressing force of 2000 kN is applied through inclined tendon, zero eccentricity at support and 'e' at mid-span. To nullify the external point load effect, how much 'e' should be provided? Neglect the self weight of beam.
 - (1) 12.5 mm
- (2) 50 mm
- (3) 70 mm
- (4) 85 mm
- 71. In a prestressed concrete beam, the ratio of applied prestressing force (P) to the concrete capacity of the section in compression is known as
 - (1) Moment ratio (R)
- (2) Eccentricity Ratio (€)
- (3) Reinforcement Ratio (m)
- (4) Efficiency factor (ρ)
- 72. The minimum transverse reinforcement in prestressed concrete beam is given by formula:
 - (1) $\frac{b S_V}{A_{S_V}} = \frac{0.87 f_y}{0.4}$

(2) $\frac{A_{S_V}}{b S_V} = \frac{0.4}{0.87 f_y}$

(3) $\frac{A_{S_V}}{0.87 f_V} = \frac{0.4}{b S_V}$

- (4) $\frac{6 \, \text{S}_{\text{V}}}{0.87 \, f_{\text{V}}} = \frac{\text{A}_{\text{S}_{\text{V}}}}{0.4}$
- 73. The net downward force of pre-stressed concrete beam with bent tendon is given as:
 - (1) $w 2p \sin\theta$

(2) $w + 2P \sin\theta$

(3) Zero

(4) 2

74.	Hig	h tensile bars (hreaded	at the end	ls are u	s are used in :					
	(1) Freyssinet system				(2)	Gifford - Udall system					
	(3)	Lee - McCall	system		(4)	Mag	gnel - Blaton s				
75.	A post tensioned concrete beam is prestressed by means of three cables each 100 mm ² are and stressed to 1100 MPa. All three cables are straight and located at an eccentricity of 5 mm. If modular ratio (m) = 6 and stress in concrete at the level of steel (f_c) = 5 MPa, the what is the loss of stress in cables due to elastic shortening if all cables are simultaneously tensioning and anchoring?										
	(1)	90 MPa	(2)	60 MPa		(3)	30 MPa	(4)	0 MPa		
76.	ancl	the time of ini horage shall no trand.	tial tensi ot exceed	oning, the	e inaxii _ of th	mum e ultir	tensile stress nate tensile st	f _{pi} imme rength f _{pi}	diately be of the wi	hind the ire or bar	
	(1)	55%	(2)	69%		(3)	76%	(4)	85%		
77.		ystem usually a es, etc on large				of pre	e-tensioned m	embers lil	ke railway	sleepers,	
	(1)	Magnel-Blate	n systen	n	(2)	P.S.	C. Monowire	system			
	(3)	Hoyer syster	n		(4)	Giff	ord-Udall sys	tem			
78.	the	the areas imme concrete, after ing of anchora	account	ing for lo	sses du						

- (1) $0.48 f_{ci} \sqrt{\frac{A_{bearing}}{A_{punching}}}$ or $0.8 f_{cK}$ whichever is smaller
- (2) $0.45 f_{ci} \sqrt{\frac{A_{bearing}}{A_{punching}}}$ or $0.40 f_{cK}$ whichever is smaller
- (3) $0.48 f_{ci} \sqrt{\frac{A_{bearing}}{A_{punching}}}$ or $0.76 f_{cK}$ whichever is smaller
- (4) $0.40 f_{ci} \sqrt{\frac{A_{bearing}}{A_{punching}}}$ or $0.78 f_{cK}$ whichever is smaller

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

- 79. Independent float of an activity (i, j) is denoted by IF (i, j). The earliest occurrence times of i and j are denoted by E_i and E_j respectively. The latest occurrence times of i and j are denoted by E_i and E_j respectively. E_j indicates the duration of the activity. Select **correct** option giving IF E_j is E_j indicates the duration of the activity.
 - (1) $E_i L_i D(i, j)$

(2) $L_i - E_i - D(i, j)$

(3) $L_i - E_j - D(i, j)$

- (4) $E_i E_i$
- 80. A part of quality management system, that indicates the degree to which design quality is achieved in the actual construction work is called:
 - (1) Quality Assurance
- (2) Quality of design
- (3) Quality of conformance
- (4) Quality of performance
- 81. Which among the following equipment found suitable for removing material from coffer dam, sewer manholes and well foundations?
 - (1) Clamshell
- (2) Power shovel
- (3) Dragline
- (4) Back hoe
- 82. The following technique is not a quality control method ______
 - (1) Inspection
- (2) Testing
- (3) Designing
- (4) Sampling
- 83. The PERT is a management tool, having expected mean time (t_m) , optimistic time (t_0) and persimistic time (t_p) , where the variance is given by
 - $(1) \quad \frac{t_p t_0}{6}$

(2) $\frac{t_0 + 4}{6} \frac{t_m + t_p}{6}$

(3) $(t_p - t_o)^2$

- $(4) \quad \left(\frac{t_p t_o}{36}\right)^2$
- 84. When was the National Safety Council set up in India?
 - (1) 1966
- (2) 1867
- (3) 1948
- (4) 1962

85.	Items of 'C' type are identified for a project using ABC analysis. Which of the following statements are true for them?											
	(a)	Even rough quantity estimate is sufficient										
	(b)	Bulk ordering is preferred										
	(c)	Ordering on EOQ basis is preferred										
	(d)	Even junior level staff is authorized to order										
	Ans	Answer Options:										
	(1)	All of the above	(2)	(a), (b) and (d)								
	(3)	Only (c)	(4)	None of the above								
86.	Which of the following is not a type of drilling equipment?											
	(1)	Jack Hammer (2) Shot drill		(3)	Drifter	(4)	Ripper					
87.	Which among the following construction equipment would you recommend for compaction of cohesive soil ?											
87.												
87.			(2)	Shee	ep Foot Rollers							
87.	of co	phesive soil ?	(2) (4)		ep Foot Rollers							
87.	of co (1) (3) A co per	ohesive soil ? Smooth - Wheeled Rollers	(4)	Tam of 200	opers O M.T. of steel. T							
	of co (1) (3) A co per	ohesive soil ? Smooth - Wheeled Rollers Vibratory Rollers onstruction company has annual de M.T. of steel is ₹ 2,000 and the cos	(4) mand t to p	Tam of 200	opers O M.T. of steel. T							
	of co (1) (3) A co per orde (1)	ohesive soil ? Smooth - Wheeled Rollers Vibratory Rollers onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity ?	(4) emand at to p	of 200 lace a	npers 0 M.T. of steel. T n order is ₹ 50,00 100 M.T.	(4)	40 M.T.					
88.	of co (1) (3) A co per orde (1)	ohesive soil ? Smooth - Wheeled Rollers Vibratory Rollers onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity ? 50 M.T. (2) 70.7 M.T.	(4) emand at to p	of 200 lace a (3)	npers 0 M.T. of steel. T n order is ₹ 50,00 100 M.T.	(4) te layor	40 M.T.					
88.	of co (1) (3) A co per orde (1)	Smooth - Wheeled Rollers Vibratory Rollers Onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity? 50 M.T. (2) 70.7 M.T.	(4) mand at to p	of 200 lace a (3) red wh	npers 0 M.T. of steel. T n order is ₹ 50,00 100 M.T. hile designing sit	(4) te layor	40 M.T.					
88.	of co (1) (3) A co per orde (1) Whi	Smooth - Wheeled Rollers Vibratory Rollers Onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity? 50 M.T. (2) 70.7 M.T. ch are some of the factors to be concerned.	(4) emand at to p	of 200 lace a (3) red wh	npers O M.T. of steel. To order is ₹ 50,000 100 M.T. hile designing signitity of material	(4) te layor	40 M.T.					
88.	(1) (3) A coper order (1) Whit (a) (c) (e)	Smooth - Wheeled Rollers Vibratory Rollers Onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity? 50 M.T. (2) 70.7 M.T. ch are some of the factors to be concentration sequence Parking of workers	(4) emand at to p	of 200 lace a (3) red wh	npers O M.T. of steel. To order is ₹ 50,000 100 M.T. hile designing signitity of material	(4) te layor	40 M.T.					
88.	(1) (3) A coper order (1) Whit (a) (c) (e)	Smooth - Wheeled Rollers Vibratory Rollers Onstruction company has annual de M.T. of steel is ₹ 2,000 and the coser quantity? 50 M.T. (2) 70.7 M.T. ch are some of the factors to be concentration sequence Parking of workers Soil conditions	(4) emand at to p	of 200 lace a (3) red wh Qua	npers O M.T. of steel. To order is ₹ 50,000 100 M.T. hile designing signitity of material	(4) te layor	40 M.T.					

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

90.	The convergence in the Bisection method is												
	(1)	non	linear	(2)	lmear		(3)	ex	ponential	(4)	all of the above		
91.	The curve in a trapezoidal rule passing through the coordinates of a straight line has a polynomial of												
	(1)	First	order	(2)	Second	order	(3)	Th	ird order	(4)	Fourth order		
92.	The Bisection method is also known as												
	(1) Quaternary chopping					(2)	Tri-region chooping						
	(3)	Bina	ry chop	ping		(4)	He	x-regi	ion choppin	g			
93.	Nev	Newton - Raphson method has											
	(1)	first	order co	nverger	ice	(2)	(2) second order convergence						
	(3) first order divergence					(4)	seco	ond o	order diverg	ence			
94.	The value of $\int_{-3}^{3} x^4 dx$ by using Trapezoidal rule is:												
	(1)	112		(2)	114		(3)	113	3	(4)	115		
95.				e wide. wing tab		ı'd' in	metre	sata	distance 'x	' metre	s from one bank is		
	x :	. 0	10	20 3	30 40	50	60	70	80				
	d:	0	4	7	9 12	15	14	8	3				
	Hence the area of c/s of the river using Simpson's rule is:												
	(1)		sq. met.	(2)	710 sq.		(3)		sq. met.	(4)	716 sq. met.		

96.	valu		ng with an initially in Raphson method									
	(1)	4	(2)	1		(3)	0	(4)	-1			
97.	Bise	ction method is	value property.									
	(1)	intermediate	(2)	mediate		(3)	convergent	(4)	divergent			
98.	In C	Gauss Jordan me	thod w	hich of the	follov	ving t	ransformations	s are allo	wed :			
	(1)	Diagonal trans	sforma	tions	(2)	Col	umn transforn	nations				
	(3) Row transformations					Squ	are transforma	ations				
99.	A cı	A cross-section area of river flow can be calculated by using following formula										
	(1)	Simpson's rule	2		(2)	Trapezoidal rule						
	(3)	Both (1) and (2)		(4)	Thu	mb rule					
100.	Eva	Evaluate $\int_{0}^{2} \frac{1}{2x+1}$ by using Trapezoidal rule. Take number of intervals = 2 (with each step = 1)										
	(1)	0.867	(2)	0.933		(3)	1.267	(4)	1.333			

-000-

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येइंल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (ii) मदर प्रश्नपत्रिकेसाटी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवागला ही प्रश्नपुस्तिका स्वत:वरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमना	प्रप्रन
1.1	77

Pick out the correct word to fill in the blank:

- Q. No. 201. I congratulate you _____ your grand success.
 - (1) for

(2) at

े जा

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. वह. 201. (1) (2) **(**4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वतंत्ररीत्या पुर्रावलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

परीक्षेचे नांव: महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 परीक्षेचा दिनांक: 24 नोव्हेंबर, 2019

विषय: - स्थापत्य अभियांत्रिकी पेपर क्र. 1

महाराष्ट्र लोकसेवा आयोगामार्फत " महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 (स्थापत्य अभियांत्रिकी पेपर क्र. 1)" या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अधिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्यावाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संचC	संच D			
1	1	2	3	3			
2	2	3	2	2			
3	3	2	3	3			
4	2	3	2	3			
5	4	3	3	3			
6	1	2	1	1			
7	3	4	2	2			
8	3	2	4	2			
9	3	2	2	2			
10	2	1	2	2			
11	2	3	3	1			
12	2	1	1	4			
13	#	2	#	1			
14	4	4	1	4			
15	4	1	4	2			
16	2	#	2	2			
17	2	4	2	1			
18	1	1	4	#			
19	2	1	1	4			
20	1	2	4	1			
21	4	4	4	4			
22	1	4	2	2			
23	4	2	1	4			
24	4	3	1	1			
25	3	4	4	2			

प्रश्न		उत्तरे							
क्रमांक	संच 🗛	संच B	संच C	संच D					
26	1	3	3	1					
27	3	4	2	4					
28	4	1	1	4					
29	1	2	4	3					
30	2	3	3	1					
31	3	1	1	3					
32	1	4	1	4					
33	4	1	3	3					
34	1	1	4	1					
35	1	4	3	4					
36	3	3	2	2					
37	4	2	1	3					
38	4	1	2	4					
39	4	4	4	2					
40	2	4	1	4					
41	1	1	2	1					
42	4	2	4	1					
43	2	4	4	4					
44	2	2	4	2					
45	3	3	3	3					
46	1	4	1	4					
47	2	1	2	4					
48	1	1	3	4					
49	3	2	4	1					
50	4	1	1	1					

1 - 11th June, 2020
 # ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्न		ত	तरे	
क्रमांक	संच A	संच B	संच C	संच D
51	4	3	4	1
52	2	#	1	3
53	1	2	#	3
54	#	4	4	#
55	4	4	2	2
56	3	3	3	2
57	2	3	1	3
58	1	2	3	4
59	4	3	3	3
60	4	3	2	3
61	3	4	2	2
62	4	1	4	4
63	3	2	3	2
64	2	2	2	2
65	3	4	2	2
66	2	4	4	4
67	2	2	4	1
68	1	1	3	3
69	1	3	1	3
70	1	1	#	1
71	3	3	1	#
72	#	4	1	1
73	1	1	1	1
74	3	1	4	3
75	4	1	1	3

प्रश्न		उत्तरे					
क्रमांक	संच A	संच B	संचC	संच D			
76	3	#	3	1			
77	3	3	3	1			
78	1	3	3	4			
79	1	3	#	2			
80	3	2	2	2			
81	1	2	3	1			
82	3	3	3	3			
83	#	1	1	#			
84	1	1	3	3			
85	2	4	2	2			
86	4	#	4	1			
87	2	3	2	3			
88	3	1	1	4			
89	2	2	1	1			
90	2	1	2	2			
91	1	2	3	3			
92	3	3	3	3			
93	2	4	2	1			
94	4	3	3	2			
95	2	3	4	2			
96	3	2	1	2			
97	1	2	1	4			
98	3	1	2	1			
99	3	3	2	3			
100	2	2	3	3			

11th June, 2020

- 2-

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

A

वेळ : 2 (दोन) तास

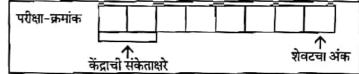
→ संच क्रमांक

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - II

स्थापत्य अभियांत्रिकी पेपर - 2

एकुण प्रश्न : 100


एकूण गुण : 200

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोप आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच

वदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसस्ता बॉल्पेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉल्प्येन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळवे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली बेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही बेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळाणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

1.	The areas enclosed by the contours in a lake are as follows:												
	Contour (m)	270 275	280 2	285 290									
	Area (m²)	50 200	400 6	500 750									
	The volume of is	water bet	ween th	ie contoi	ırs 27	0 m and 290 m	by tr	apezoidal for	mula				
	(1) 6400 m ³	(2)	8000 r	n^3	(3)	16000 m ³	(4)	24000 m ³					
2.		m. If the co				0.75 m. The ho							
	(1) 0.25 m	(2)	1.25 m	ı	(3)	2.0 m	(4)	2.5 m					
3.	When the heigh applied for mea	-			that of	the height of in	strume	nt, then a corre	ction				
	(1) Curvature	correction		(2)	Con	nbined correction	n						
	(3) Axis signa	al correction	i	(4)	Refr	action correctio	n						
4.	If h is the height above datum of the object, H be the flying height above datum and r be the radial distance of the image of the object from principal point, then the relief displacement d is equal to:												
	(1) $d = \frac{r.h}{H}$	(2)	$d = \frac{r}{1}$. <u>H</u>	(3)	$d = \frac{H.h}{r}$	(4)	$d = \frac{r}{H}$					
5.	In surveying optical square is used to setting out right angles. The horizon glass is placed at an angle of with the horizon sight and index glass is placed at an angle of with the index sight.												
	(1) 30° and 1	5° (2)	60° an	d 45°	(3)	90° and 75°	(4)	120° and 10	5°				
6.	If an upgrade of $+1.4\%$ joins another upgrade of $+0.4\%$ and rate of change of grade is 0.1% per 20 m chain, then the length of vertical curve is :												
6.							atc or	crimings or give	ide is				

of a	rea 5 cm². C	alculate F							
(1)	1:5000	(2)	1:8000		(3)	1:9000	(4)	1:3000	
the s	staff readings I was setup ne	on A and ear B and	B were obse staff readin	erved : gs obs	as 1.80 served	00 m and 1.300 on B and A w	m, respe vere found	ctively. The	reafter,
(1)	102.0 m	(2)	101.0 m		(3)	100.0 m	(4)	100.450 m	ı
The	combined cor	rection d	ue to curva	ture ar	nd ref	raction in (m)	for a dist	ance of 2 kil	lometer
(1)	0.224 m	(2)	0.1346 m		(3)	0.1570 m	(4)	0.1750 m	
In ta	acheometric su	irveying	:						
(a)	The intercep	t of the s	taff is maxi	mum	when	the staff is no	rmal to ti	he line of sig	ght.
(b)	In the tange	ntial syste	em, the staf	f is ke	pt noi	rmal to the lin	e of sight		
(c)	If a tacheom	eter is fit	ted with an	anall	atic le	ns, its additiv	e constan	it is non zer	0.
(d)	It is more co	nvenient	to hold the	staff n	ormal	l to the line of	sight thai	n to hold it v	ertical.
Sele	ct the i ncorre	ct stateme	ent/stateme	nts fr	om th	e above.			
(1)	(a) only			(2)	(a) a	ınd (b) only			
(3)	(a), (b) and	(c) only		(4)	(a),	(b), (c) and (d) only		
Gen	erally how m	uch amou	int is provid	led in	estim	ate as work c	harged es	stablishment	?
(1)	l - 2%	(2)	$1 - l\frac{1}{2}\%$		(3)	$2 - 2\frac{1}{2}$ %	(4)	2 - 4%	
			, by what	% the	wet v	olume of con	crete is t	o be increa	sed for
(1)	20%	(2)	30%		(3)	52%	(4)	25%	
	of a met (1) Two the seleve (0.85) (1) The is: (1) In ta (a) (b) (c) (d) Seleve (1) (3) Gen (1)	of area 5 cm². Cametre from the m (1) 1:5000 Two points A and the staff readings level was setup no 0.850 m, respectiv (1) 102.0 m The combined corris: (1) 0.224 m In tacheometric so (a) The intercept (b) In the tanget (c) If a tacheom (d) It is more conselect the incorrect (1) (a) only (3) (a), (b) and only Generally how many conservations of the complete of the incorrect (1) 1 - 2%	of area 5 cm². Calculate I metre from the map. (1) 1:5000 (2) Two points A and B were for the staff readings on A and level was setup near B and 0.850 m, respectively. If the (1) 102.0 m (2) The combined correction dris: (1) 0.224 m (2) In tacheometric surveying (a) The intercept of the set (b) In the tangential system (c) If a tacheometer is fit (d) It is more convenient select the incorrect statemed (1) (a) only (3) (a), (b) and (c) only Generally how much amount (1) 1 - 2% (2) In rate analysis procedure determining dry volume?	of area 5 cm². Calculate R.F. of the smetre from the map. (1) 1:5000 (2) 1:8000 Two points A and B were fixed on opposite staff readings on A and B were obsilevel was setup near B and staff reading 0.850 m, respectively. If the R.L. of A (1) 102.0 m (2) 101.0 m The combined correction due to curvatis: (1) 0.224 m (2) 0.1346 m In tacheometric surveying: (a) The intercept of the staff is maximal (b) In the tangential system, the staff (c) If a tacheometer is fitted with an (d) It is more convenient to hold the Select the incorrect statement/statement (1) (a) only (3) (a), (b) and (c) only Generally how much amount is provided the convenient of the staff is maximal (1) and (2) only Generally how much amount is provided the convenient of the staff is maximal (2) and (3) (4), (4) and (5) only	of area 5 cm². Calculate R.F. of the scale of metre from the map. (1) 1:5000 (2) 1:8000 Two points A and B were fixed on opposite the staff readings on A and B were observed level was setup near B and staff readings obs 0.850 m, respectively. If the R.L. of A is 101 (1) 102.0 m (2) 101.0 m The combined correction due to curvature aris: (1) 0.224 m (2) 0.1346 m In tacheometric surveying: (a) The intercept of the staff is maximum (b) In the tangential system, the staff is ke (c) If a tacheometer is fitted with an anall (d) It is more convenient to hold the staff metal Select the incorrect statement/statements from (1) (a) only (2) (3) (a), (b) and (c) only (4) Generally how much amount is provided in (1) 1-2% (2) 1-1½% In rate analysis procedure, by what % the determining dry volume?	of area 5 cm². Calculate R.F. of the scale of the metre from the map. (1) 1:5000 (2) 1:8000 (3) Two points A and B were fixed on opposite bank of the staff readings on A and B were observed as 1.86 level was setup near B and staff readings observed 0.850 m, respectively. If the R.L. of A is 101.500 m (1) 102.0 m (2) 101.0 m (3) The combined correction due to curvature and refrise: (1) 0.224 m (2) 0.1346 m (3) In tacheometric surveying: (a) The intercept of the staff is maximum when (b) In the tangential system, the staff is kept now (c) If a tacheometer is fitted with an anallatic led (d) It is more convenient to hold the staff normal Select the incorrect statement/statements from the (1) (a) only (2) (a) a (3) (a), (b) and (c) only (4) (a), Generally how much amount is provided in estim (1) 1 - 2% (2) 1 - 1 \frac{1}{2}\% (3) In rate analysis procedure, by what % the wet we determining dry volume?	of area 5 cm^2 . Calculate R.F. of the scale of the map. Draw a metre from the map. (1) $1:5000$ (2) $1:8000$ (3) $1:9000$ Two points A and B were fixed on opposite bank of a river. The the staff readings on A and B were observed as 1.800 m and 1.300 m and 1.300 m and staff readings observed on B and A work of a river. The the staff readings on A and B were observed as 1.800 m and 1.300 m are specifiedly. If the R.L. of A is 101.500 m , then R.L. of (1) 102.0 m (2) 101.0 m (3) 100.0 m The combined correction due to curvature and refraction in (m) is: (1) 0.224 m (2) 0.1346 m (3) 0.1570 m In tacheometric surveying: (a) The intercept of the staff is maximum when the staff is not (b) In the tangential system, the staff is kept normal to the line (c) If a tacheometer is fitted with an anallatic lens, its additive (d) It is more convenient to hold the staff normal to the line of Select the incorrect statement/statements from the above. (1) (a) only (2) (a) and (b) only (3) (a), (b) and (c) only (4) (a), (b), (c) and (d) Generally how much amount is provided in estimate as work of the convenient of the provided in estimate as work of the convenient of the map.	of area 5 cm². Calculate R.F. of the scale of the map. Draw a scale to metre from the map. (1) 1:5000 (2) 1:8000 (3) 1:9000 (4) Two points A and B were fixed on opposite bank of a river. The level was the staff readings on A and B were observed as 1.800 m and 1.300 m, respelevel was setup near B and staff readings observed on B and A were found 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is: (1) 102.0 m (2) 101.0 m (3) 100.0 m (4) The combined correction due to curvature and refraction in (m) for a dist is: (1) 0.224 m (2) 0.1346 m (3) 0.1570 m (4) In tacheometric surveying: (a) The intercept of the staff is maximum when the staff is normal to the line of sight (c) If a tacheometer is fitted with an anallatic lens, its additive constant (d) It is more convenient to hold the staff normal to the line of sight that Select the incorrect statement/statements from the above. (1) (a) only (2) (a) and (b) only Generally how much amount is provided in estimate as work charged estimate analysis procedure, by what % the wet volume of concrete is to determining dry volume?	(1) 1:5000 (2) 1:8000 (3) 1:9000 (4) 1:3000 Two points A and B were fixed on opposite bank of a river. The level was setup near the staff readings on A and B were observed as 1.800 m and 1.300 m, respectively. The level was setup near B and staff readings observed on B and A were found to be 0.350 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is: (1) 102.0 m (2) 101.0 m (3) 100.0 m (4) 100.450 m The combined correction due to curvature and refraction in (m) for a distance of 2 ki is: (1) 0.224 m (2) 0.1346 m (3) 0.1570 m (4) 0.1750 m In tacheometric surveying: (a) The intercept of the staff is maximum when the staff is normal to the line of sight. (b) In the tangential system, the staff is kept normal to the line of sight. (c) If a tacheometer is fitted with an anallatic lens, its additive constant is non zer (d) It is more convenient to hold the staff normal to the line of sight than to hold it verifies the incorrect statement/statements from the above. (1) (a) only (2) (a) and (b) only (3) (a), (b) and (c) only (4) (a), (b), (c) and (d) only Generally how much amount is provided in estimate as work charged establishment (1) 1-2% (2) 1-1/2% (3) 2-2/2/2% (4) 2-4% In rate analysis procedure, by what % the wet volume of concrete is to be increated etermining dry volume?

		italised value o rest prevailing b			net a	nnual rent of ₹	1,000 a	and highest rate of					
	(1)	1,000	(2)	1,00,000	(3)	10,000	(4)	100					
14.	four	In the Centre Line Method of calculating quantities, the following rules for each item from foundation is applied. The total centre line length of each item is calculated and for cross walls, deductions are made as follows :											
	(1)	½ breadth of i	item at	each junction	(2)	1 full breadth	of item	at each junction					
	(3)	2 full breadth	of item	at each junction	(4)	no deductions	;						
15.	Whi	Which value is obtained by dismantling the building?											
	(1)	Book Value	(2)	Distress Value	(3)	Salvage Value	(4)	Scrap Value					
16.		sanction of deta k by competent			ulatio	n, quantities of	work, r	ates and cost of the					
	(1)	Administrativ	e appro	oval	(2)	Technical san	ction						
	(3)	Expenditure s	anction	i	(4)	Official sancti	on						
17.	Determine the capital sum to be invested to receive annual income of ₹ 1 lakh, if the rate of interest is 5%.												
	(1)	₹ 50 lakh	(2)	₹ 20 lakh	(3)	₹ 100 lakh	(4)	₹ 10 lakh					
18.	Whi	Which of the following methods is also called as out to out and in to in method?											
18.			wall mathad	(2)	Centre line m	ethod							
	(1)	Long wall and	1 Snort	wan mediod	(2)								
	* / * /	Long wall and Plinth area m		wan meulou	• • •	Cubic content		d					
19.	(3)	Plinth area m	ethod	n item of P.C.C. ((4)	Cubic content	metho						
19.	(3)	Plinth area management	ethod on for a		(4)	Cubic content 4) should inclu	metho						
19.	(3) Deta	Plinth area manded specification Quantity of manded specification	on for a naterial,	n item of P.C.C. ((4) 1 : 2 : mater	Cubic content 4) should inclu ials, work cond ality and propo	de follo	owing points :					
19.	(3) Deta (1)	Plinth area made ailed specification Quantity of magnetic General specification includes	on for a naterial, ication, de/excl	n item of P.C.C. (cost of different : materials to be use	(4) 1:2: mater ed, qu f mea	Cubic content 4) should inclu ials, work cond ality and propos	de follo	owing points : onstruction method,					

U13					6				Α				
20.	A lo	A load of 625 T is imposed on a footing of size 2 m \times 2 m.											
		If it is to be assumed that, stress at depth "d" is spread out at an angle of 2 vertical to											
		I horizontal, find out the depth 'd' at which the intensity of stress will be $\left(\frac{1}{9}\right)^{th}$ of the stress											
	at g	at ground level.											
	Cho	ose correct dept	h in m	etres from the fo	ollowin	g:							
	(1)	2 m	(2)	3 m	(3)	4 m	(4)	5 m					
21.	of 2 Find	An embankment in clayey soil of 5 m height is to be constructed using factor of safety of 2.5. It is to be assumed that stability number is $\frac{1}{45}$ and unit weight of soil is 18 kN/m^3 . Find the minimum cohesive strength (in kN/m²) which the soil should have. Choose correct answer from the following:											
	(1)	30	(2)	5	(3)	10	(4)	15					
22.	From the plate load test, the ultimate bearing capacity of plate of size $0.3 \text{ m} \times 0.3 \text{ m}$ on sand deposit is observed to be 200 kN/m^2 , the ultimate bearing capacity of a footing of size $1.5 \text{ m} \times 1.5 \text{ m}$ will be :												
	(1)	200 kN/m ²	(2)	1000 kN/m ²	(3)	500 kN/m ²	(4)	2000 kN/m	₁ 2				
23.	The	rock core samp re were five inta were collected.	ct piece	es of rocks of le	ngths 1	50 mm, 200 mr	n, 75 m	m, 50 mm, an	d 200				

(1) 55.0% (2)67.5%

(3)62.5% (4)40.0%

Poisson's ratio of a soil sample is 0.4. Using theory of elasticity, the estimated value of the coefficient of lateral earth pressure at rest in the same soil is :

(1) 0.5 (2) 0.7 (3) 0.3

(4) 1.0

If a concentrated load Q produces a stress of 40 kN/m^2 at a depth of 1 m, then the stress at 2 m depth and same radial distance will be :

 20 kN/m^2 (1)

 80 kN/m^2 (2)

 40 kN/m^2 (3)

(4) 10 kN/m²

कळ	या का	मासाठी जागा/SI	ACE FO	OR ROUGH W	ORK			P.T.O.				
	(1)	3% excess	(2)	2% less	(3)	2% excess	(4)	1.5% excess				
31.	the a	In a suppressed rectangular weir, the calculated discharge was found to be 3% in excess of the actual discharge. If this discrepancy was due to an error in reading the head, the measured head was:										
	(4)	None of the a	ibove.	<u> </u>								
	(3)	The flow is st	teady, n	on-viscous, inco	mpress	ible and irrotat	ional.					
	(2)	The flow is n	on-visco	us, uniform an	d stead	y.						
	(1)	The flow is u	niform a	and incompress	ible.							
30.	Bernoulli's equation is derived making assumptions that :											
29.		llel. If the frict						eter and length, in arge in M to that of				
	(1)	75 kN/m ²	(2)	375 kN/m ²	(3)	133 kN/m ²	(4)	37.5 kN/m ²				
28.		•	•	ssion test a soil 00 mm², then th				cross-sectional area				
	(1)	500 kN	(2)	125 kN	(3)	250 kN	(4)	200 kN				
27.	pure	A pile having a square cross-section of 0.5 m sides has length of 10 m. It is embedded in purely cohesive soil having uniform cohesion of 50 kN/sq. m upto 10 m depth. If adhesion factor = 0.5, the ultimate capacity of the pile considering only skin friction component will be:										
	(4)	All of the abo	ve									
	(3)	(3) None of the above										
	(2)	Saturation of	soil									
	(1)	Water conten	t and M	aximum dry de	ensity							
20.	And	ount of compac	mon gre	atty affects.								

32.		A uniform body 3 m long, 2 m wide and 1 m deep floats in water. If the depth of immersion is 0.60 m, then the weight of the body is :											
	(1)					(3)	35 31 LN						
33.		a laminar flow			ipe, th	e ma			I to				
	(1)	1.5 times the	average	velocity	(2)	2.0 t	imes the avera	ge veloc	ity				
	(3)			•			e of the above						
34.		Coefficient of contraction is the ratio of :											
	(1)	(1) actual velocity of jet at Vena contracta to the theoretical velocity.											
	(2)	(2) loss of head in the orifice to the head of water available at the exit of the orifice.											
	(3)	(3) actual discharge through an orifice to the theoretical discharge.											
	(4)	area of jet at											
35.	Model analysis of aeroplanes and projectile moving at supersonic speed is based on												
	(1)	Reynold Nu	mber		(2)	Frou	ide Number						
	(3)	Mach Numb			(4)		er Number						
36.	A d	imensionless g							-, , ,				
		ρ (mass density), μ (dynamic viscosity), g (gravitational acceleration) and D (characteristic length) is :											
	(1)	D ^{3,2} /рµg	(2)	μ/ ρg ¹ 2 [3 ² 2	(3)	/pgD ³ 2	(4)	$\int_{\rho^{1/2}Dg^{1/2}}^{\mu}$				
37.		rectangular ch	annel, ca	arrying a ce	ertain	discha	urge at a depth	Y _o and	Froude number F _o ,				
	(1)	Fo	(2)	$F_0^{-\frac{1}{2}}$		(3)	F_0^{-3} 2	(4)	F ₀ ² 3				

38.

In a reciprocating pump without air vessel, the friction head in the delivery pipe is maximum

	at th	e crar	ık ang	gle θ=	?								
	(1)	0°			(2)	90°			(3)	135°		(4)	180°
39.	An a	ir ves	sel in	the d	eliver	y side	of a r	ecipro	catin	g pump :			
	(1)	mair	ntains	stead	y disc	harge	outp	ut.					
	(2)	prev	ents c	avitat	ion in	the s	ystem	ι.					
	(3)	enab	les su	ction	head	to be i	increa	ised.					
	(4)	enab	les th	e pun	np to	run at	high	er spe	ed.				
40.		double			proca	ting p	ump,	there	will t	e no flow i	nto or f	rom	the air valve, whe
	(1)	39° 3	32' an	d 140°	28'			(2)	39°	32 to 140° 2	28'		
	(3)	0° to	39° 3	2'				(4)	18°	34' to 161°	26'		
41.	The	specif	ic spe	ed of	a cent	rifuga	l pun	np has	s the o	dimensions	of:		
	(1)	$L^{\frac{3}{4}}$	T ⁻³ / ₂					(2)	M ⁰	L ⁰ T ⁰			
	(3)	M /	½ L½	$T^{-1/4}$				(4)	$L^{3/4}$	$T^{-1/2}$			
42.	The	work	saved	by fi	tting a	ın air	vesse	l to a	doubl	e acting rec	iprocat	ing p	oump is:
	(1)	39.2	%		(2)	84.8	%		(3)	48.8%		(4)	92.3%
43.	Mat	ch the	pair	:									
	(a)	Run	of riv	er pla	ınt		(i)	Larg	ge sto	rage			
	(b)	Rese	rvoir	plant			(ii)	Wat	er pu	mped back	to the	head	water tank
	(c)	Pun	iped s	torage	e plan	t	(iii)	Sea	water	7			
	(d)	Tida	l plan	ıt .			(iv)	No:	storag	ge			
	Ans	wer C	ption	ıs :									
		(a)	(b)	(c)	(d)								
	(1)	(iii)	(i)	(iv)	(ii)								
	(2)	(iv)	(ii)	(iii)	(i)								
	(3)	(iv)	(i)	(ii)	(iii)								
		(iv)	(iii)	(i)	(ii)								

77.	гар	ian turbine is a propener tur							
	(1)	non-adjustable	(2)	adjustable					
	(3)	fixed	(4)	none of the abov	re				
45.	is 4	•		~	ump is 200 mm and its stroke cal discharge for pump in				
	(1)	0.01256 (2) 12.5	6	(3) 1.256					
46.	Whi	ch of the following statemen	t is correct						
	(1)	(1) Centrifugal pump convert hydraulic energy into mechanical energy.							
	(2)								
	(3)	(3) Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force.							
	(4)	Reciprocating pumps conv	ert hydrauli	ic energy into med	chanical energy.				
47.	The	design flood commonly ado	pted in Indi	a for spillways of	major projects is the :				
	(1)	Standard Project Flood.	(2)	Flood with a Re	turn Period of 100 years.				
	(3)	Probable Maximum Flood.	(4)	Flood with a Re	turn Period of 10,000 years.				
48.	The	Thiessen polygon is:							
	(1)	a polygon obtained by join							
		a polygon obtained by join	ing adjoinir	ng raingauge statio	on.				
	(2)	a representative area used							
	(2) (3)		for weighin	g the observed sta					
		a representative area used	for weighin action of de	g the observed sta pth-area curve.					
49.	(3) (4) In a	a representative area used an area used in the constru the descriptive term for the	for weighin action of de shape of h emand line	g the observed stapth-area curve. ydrograph. drawn from a ridg	ition precipitation.				
 49.	(3) (4) In a	a representative area used an area used in the constru the descriptive term for the flow-mass curve study, the de	for weighin action of de shape of he emand line essents that :	g the observed stapth-area curve. ydrograph. drawn from a ridg					
 49.	(3) (4) In a the	a representative area used an area used in the constru the descriptive term for the flow-mass curve study, the d mass curve again. This repre	for weighin action of de shape of he emand line esents that :	g the observed stapth-area curve. ydrograph. drawn from a ridg	ition precipitation.				
 49.	(3) (4) In a the (1)	a representative area used an area used in the constru the descriptive term for the flow-mass curve study, the d mass curve again. This repre the reservoir was not full a	for weighin action of de shape of he emand line essents that the beginnate.	g the observed stapth-area curve. ydrograph. drawn from a ridg	e in the curve did not intersect				

- 50. An instantaneous unit hydrograph is a direct run-off hydrograph :
 - (1) of 1 cm magnitude due to a rainfall excess of 1 h duration.
 - (2) that occurs instantaneously due to a unit rainfall excess of duration 'D' h.
 - (3) of unit rainfall excess precipitating instantaneously over the catchment.
 - (4) occurring at any instant in a long storm.
- 51. Evaporation losses from surface of a reservoir can be reduced by sprinkling:
 - (1) DDT

- (2) Acetyl alcohol
- (3) Potassium permanganate
- (4) None of the above
- 52. Dalton's law is given as:
 - $(1) \quad E_L = C[e_s + e_a]$

(2) $E_L = C[e_a - e_s]$

(3) $E_L = C[e_s - e_a]$

- (4) $E_L = C[e_s + e_w]$
- 53. Direct run-off is made up of :
 - (1) Surface run-off, prompt interflow and channel precipitation.
 - (2) Surface run-off, infiltration and evapotranspiration.
 - Overland flow only.
 - (4) Rainfall and Evaporation.
- 54. The Rainfall Intensity of Light Rain is:
 - (1) Upto 2.5 mm/Hz

(2) Upto 3.0 mm/Hz

(3) Upto 5.00 mm/Hz

- (4) Upto 7.5 mm/Hz
- 55. A plot between rainfall intensity versus time is called as:
 - (1) hydrograph
- (2) mass curve
- (3) hyetograph
- (4) isohyet
- 56. Which of the following is known as 'feeding bottle technique'?
 - Drip Irrigation

(2) Sprinkler Irrigation

(3) Furrow Method

(4) None of the Above

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

P.T.O.

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

none of the above.

(4)

64. Lacey gave V - Q - f relation as:

(1)
$$V = \left[\frac{Qf^2}{160}\right]^{1/4}$$

$$(2) \qquad V = \left[\frac{Qf^2}{140}\right]^{1/6}$$

$$(3) \qquad V = \left\lceil \frac{fQ^2}{160} \right\rceil^{\frac{1}{4}}$$

$$(4) \qquad V = \left\lceil \frac{Qf}{140} \right\rceil^{1/6}$$

65. Which of the following method is recommended by I.R.C. for design of flexible pavement?

- (1) Group index method
- (2) Westergaard method

(3) CBR method

(4) None of these

66. In case of pavement design:

Match the List - I (Type of carriageway) with List - II (Lane distribution factor) :

List - I

List - II

- (a) Undivided roads with two lane carriageway
- (i) 0.75
- (b) Undivided roads with single lane carriageway
- (ii) 1.0
- (c) Divided carriageway with four lanes each
- (iii) 0.45
- (d) Undivided roads with four lane carriageway

(d)

(iv) 0.40

Answer Options:

- (a) (b) (c)
- (1) (ii) (i) (iv) (iii)
- (2) (i) (ii) (iii) (iv)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)

67. As per current Viscosity Graded (VG) bitumen specifications in India (IS 73 : 2006, Third revision) the Absolute Viscosity of bitumen using vacuum capillary tube viscometer is determined at ______ temperature.

- (1) 135°C
- (2) 25°C
- (3) 27°C
- (4) 60°C

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

P.T.O.

The free mean speed on a roadway is found to be 70 kmph. Under stopped condition the

3700 vehicles/hour/lane

3000 vehicles/hour/lane

(2)

(4)

average spacing between vehicles is 5.0 m. The capacity flow is:

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

3500 vehicles/hour/lane

3200 vehicles/hour/lane

(1)

(3)

72.		R' is the rad percentage) is		rvature o	of a hi	ll roa	d, the maxin	num gra	de comper	ısation
	(1)	65/R	(2)	75/R		(3)	85/R	(4)	95/R	
73.							If a horizonta gradient on th			
	(1)	0.75%	(2)	1.3%		(3)	2.7%	(4)	3.25%	
74.		ase of erection arted from					symmetrical at thed.	out cent	re line, the e	rection
	(1)	Left end			(2)	Both	n ends			
	(3)	Right end			(4)	Nor	e of the above			
75.		ne nature of ri	iver is at	a modera	te bent	cond	ition then ma	ximum V	depth of s	cour is
	(1)	1.25 D	(2)	1.75 D		(3)	1.5 D	(4)	2 D	
76.	The	effective span	for main	girder in	case of	bridg	es is :			
	(1)	the distance	between	centres of	main g	girder	s.			
	(2)	the distance	between	centres of	cross g	girder	s.			
	(3)	the distance	between	centres of	road b	earin	gs.			
	(4)	the distance	between	centres of	bearin	g plat	es.			
77.	In w	which of the fo	ollowing t	ype of Ab	utment	s, win	g walls are no	t provide	ed:	
	(1)	Gravity Abu	ıtments		(2)	U-	Abutments			
	(3)	Tee - Abutn	nents		(4)	Abu	tment Pier			
78.				_			acting on any above the road	-	l moving liv	ve load
	(1)	1.0 m	(2)	1.2 m		(3)	1.5 m	(4)	1.75 m	
a re-	या का	 मासाठी जागा/S	PACE EC	OR ROLLO	H WO	RK				
4.00	4//									PTO

7 9 .		per IRC recom bridge should			nimum	strai	ght length of a	approache	es on either side of
	(1)	15 m	(2)	20 m		(3)	25 m	(4)	30 m
80.		IRC Class A lebe less than	_		ose to t	ail sp	acing betweer	two suc	cessive trains shall
	(1)	12.5 m	(2)	15.5 m		(3)	17.5 m	(4)	18.5 m
81.		width of carria	~	•				each lane	meaning the width
	(1)	Class A	(2)	Class B		(3)	Class C	(4)	Class 70 R
82.	The	effective linea	r waterw	ay in mete	ers is gi	ven b	y :		
	(1)	$L = 0.75 \text{ V}^2$					C√Q		
	(3)	$L = 1.811 C_{\gamma}$	/Q		(4)	L=	CQ ²		
83.	3. Which of the following is not a patented explosive available in operations?								rket for tunnelling
	(1)	PENT	(2)	RDX		(3)	TNT	(4)	NTT
84.	4. Which shape of tunnel is suitable for the purpose of navigation ?								
	(1)	Circular Sha	pe		(2)	D S	hape		
	(3)	Horse-shoe S	Shape		(4)	Rect	tangular Shap	e	
85.	Which of the following method of tunitunnelling method?					g is be	eing gradually	replaced	by compressed air
	(1)	Needle beam	n method		(2)	Belg	ian method		
	(3)	Heading and	l Bench r	nethod	(4)	Fore	poling metho	d	

(2)

(4)

Glazed brick sewer

Cement concrete sewer

कच्या कामासाठी जागा/SPACE FOR ROUGH WORK

Cast iron sewer

Stone ware sewer

(1)

(3)

P.T.O.

	(4)	remove oxygen from water and to add carbon dioxide to impart test and odour to								
	(3)	remove gases like carbon dioxide, hydrogen sulfide and to add oxygen to water.								
	(2)	add calcium and magnesium to water.								
	(1)	remove hardness and chlorides from water.								
96.	In w	vater treatment process, aeration of water is carried out to :								
	(3)	Salmonella typhi (4) Vibro comma								
	(1)	Escherichia coli (2) Entamoeba histolytica								
95.		ideal pathogenic indicator used for bacterial analysis of water is exhibited by the								
	(4)	It may cause conjunctivitis.								
	(3)	It reduces oxygen carrying capacity of blood.								
	(2)	It is carcinogenic in nature.								
	(1)	(1) It causes loss of sense of smell.								
94.	Carl	on monoxide is considered as most poisonous gas in Urban areas because :								
	(1)	(b) and (c) (2) (a) and (c) (3) Only (c) (4) Only (b)								
	Ans	wer Options:								
	(d)	Screen - Cloth, paper								
	(c)	Skimming tank - Fat and Grease								
	(b)	Aeration tank - Suspended impurities								
	(a)	Grit chamber - Sand, silt								
	ın w	vaste water treatment system :								

97.	The unit in which both sedimentation and digestion take place simultaneously is the:										
	(1)	Detritus tank									
	(3)	Skimming tank	ς.	(4)	Clas	rifier					
98.	The	The sag in the dissolved oxygen curve results because of DO is a function of :									
	(1) Both addition and depletion of oxygen from the stream.										
	(2)	(2) The rate of addition of oxygen to the solution.									
	(3)	3) The rate of addition of oxygen is linear, but not that of depletion.									
	(4)	(4) The rate of organic substances introduced in the process.									
99.	Alum as a coagulant is found to be effective between pH range of										
,,,											
<i>,,</i> ,	(1)	8.0 to 10.0	(2)	8.5 to 10.5	(3)	6.5 to 8.5	(4)	7.0 to 9.0			
	(1)	8.0 to 10.0				274.3		•			
	(1)		i, the s	ewage is made		274.3		•			
	(1)	n oxidation pond	i, the s	ewage is made		274.3		•			
	(1) In a: (1)	n oxidation pond Algae bacteria	l, the s symbion	ewage is made osis only. nly.		274.3		•			

-000-

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे. असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्यात्रावतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

31131	ਜਾਰਜ
नमना	uy7
	~~ ,

Pick out the correct word to fill in the blank:

Q. No. 201. I congratulate you ______ your grand success

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. क. 201. (1) (2) (4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर क्रमांक हा तुम्हाला स्वतंत्ररोत्या पुरविलेख्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉल्पेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

परीक्षेचे नांव: महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 परीक्षेचा दिनांक: 24 नोव्हेंबर, 2019

विषय: - स्थापत्य अभियांत्रिकी पेपर क्र. 2

महाराष्ट्र लोकसेवा आयोगामार्फत " महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019 (स्थापत्य अभियांत्रिकी पेपर क्र. 2)" या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

				उत्तरता			
प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संच C	संच D			
1	2	#	2	#			
2	2	3	4	3			
3	3	4	#	4			
4	1	1	3	1			
5	4	1	1	4			
6	1	2	4	2			
7	4	4	2	4			
8	1	1	1	2			
9	#	2	4	1			
10	4	4	1	1			
11	3	1	3	3			
12	3	3	1	2			
13	3	3	2	3			
14	1	2	4	4			
15	4	2	3	2			
16	2	2	2	3			
17	2	1	1	1			
18	1	3	3	1			
19	2	4	2	2			
20	3	3	1	#			
21	2	#	3	2			
22	2	1	#	2			
23	1	2	2	4			
24	2	2	4	#			
25	#	2	2	1			

KEY प्रश्न	उत्तरे						
क्रमांक	संच A	संच B	संचC	संच D			
26	#	#	#	1			
27	1	4	1	3			
28	4	1	2	2			
29	1	3	4	1			
30	3	2	3	4			
31	3	4	2	3			
32	3	4	1	3			
33	2	2	2	3			
34	4	3	3	2			
35	3	3	3	4			
36	2	3	3	2			
37	4	1	4	3			
38	2	2	3	1			
39	1	1	1	2			
40	1	1	3	1			
41	1	3	1	3			
42	1	2	2	1			
43	3	3	1	1			
44	2	1	2	2			
45	2	1	2	3			
46	3	2	1	2			
47	3	1	3	3			
48	2	3	1	3			
49	3	3	1	3			
50	3	3	3	2			

- 1 - 11th **June**, 2020 # ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्न	उत्त						
क्रमांक	संच A	संच B	संच C	संच D			
51	4	3	2	1			
52	3	3	3	1			
53	1	2	4	4			
54	1	4	3	3			
55	3	1	3	3			
56	1	3	2	2			
57	#	1	#	3			
58	3	#	1	#			
59	3	3	3	3			
60	1	3	3	3			
61	3	2	3	3			
62	3	3	3	1			
63	3	3	3	3			
64	2	1	1	1			
65	3	1	4	2			
66	2	1	2	1			
67	4	2	1	2			
68	1	2	2	3			
69	2	2	2	4			
70	2	4	2	1			
71	1	2	4	2			
72	2	4	1	4			
73	4	3	3	2			
74	2	2	4	3			
75	3	3	2	4			

प्रश्न	उत्तरे							
क्रमांक	संच A	संच B	संच C	संच D				
76	4	3	1	1				
77	3	1	4	1				
78	3	4	3	4				
79	1	3	3	3				
80	4	1,	2	3				
81	1	4	3	2				
82	2	2	1	2				
83	4	4	3	4				
84	2	4	1	4				
85	4	3	4	3				
86	1	3	4	2				
87	3	2	2	4				
88	3	2	4	1				
89	2	4	3	2				
90	4	3	3	3				
91	3	1	2	3				
92	2	2	2	3				
93	4	2	3	1				
94	3	3	1	1				
95	1	3	1	2				
96	3	4	3	4				
97	2	4	3	4				
98	1	1,	2	2				
99	3	1	4	3				
100	4	3	4	3				

11th June, 2020

- 2-

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

PACE FOR ROUGH WORK

107609 **10010**,